Hspell’s Short Road,
from Ideas into Perl Code

Nadav Har’El*

May 11, 2003t

Abstract

Hspell is a free Hebrew linguistic project, whose primary objective was to create
a free Hebrew spell-checker. In this paper we shall give a short introduction to the
problem of Hebrew spell-checking, highlight our approach, and then focus on one part
of the code, the noun inflector, giving examples and explaining why Perl was chosen
from day one as the language used by this project. We will show how Perl allowed us
very quick prototyping, and how its built-in and powerful string-handling capabilities
allowed us to easily transfer our linguistic ideas into code.

1 Introduction

The term free software was adopted [12] by Richard Stallman in 1984, for software whose
authors decided to share it with the rest of the world, freely, as well as to give the users the
freedom to see the program’s source code, modify it, and share the original program or the
modified versions with others.

Since then, many people wrote more and more free software. Perl, the topic of this
conference is one example of free software. A major boost to free software came in 1991
when Linus Torvalds wrote the first complete free kernel, Linux [10]. Later came “Linux
distributions”, large collections of free software meant to be easy to install by end users,
user-friendly desktop environments (like KDE and Gnome), and software that desktop users
have come to expect, like office suites.

However, until recently, typical Israeli users were unable to switch over to free software
because of the lack of Hebrew support throughout the system. In June of 1999, the author
(Nadav Har’El) expressed the need for better Hebrew support in free software and created
the Ivriz mailing list [11]. By January 2000, it became clear that while support for Hebrew
was planned in the big free software projects (such as Web browsers, desktop environments
and word processors), there were a few Hebrew-specific programs that were not likely to

*The work described here was a joint effort with Dan Kenigsberg. For more information, see the project’s
website, http://www.ivrix.org.il/projects/spell-checker/
tfirst appeared in proceedings of Yet Another Perl Conference, Haifa, May 2003.

miraculously appear. One of these important missing pieces was a Hebrew spell-checker, and
so we (Dan Kenigsberg and Nadav Har’El) set out to write one.

Setting our sights on a modest initial goal and choosing Perl for the project’s code allowed
us to produce a prototype in about a week. This prototype only recognized a tiny minority of
the Hebrew language, and did not include a usable front-end, but it proved that our approach
was viable and had a lot of potential.

After this prototype, the project was abandoned until we returned to working on it in
October of 2002. Less than two months later, the first fully functional release was made,
recognizing a useful percentage of the correct Hebrew words. Perl’s string-handling power
and its simplicity made it easy for us to extend the original prototype, and to spend our time
and efforts worrying about linguistic issues, rather than spending them on programming
details. Later, when we found existing spell-checking front ends unsuitable for our needs at
the time, Perl allowed us to write a different one in a mere few hours.

This article attempts to give an outline of how the Hspell spell-checker works, and a taste
of some techniques and Perl code used to implement one part of the whole system, the noun
inflector. Section 2 will give a short introduction to our approach for Hebrew spell-checking.
Section 3 will explain in a little more detail one important part of the Hspell code, the
noun-inflector, written (as was the rest of the code) in Perl.

Understanding section 3 and the examples it contain requires familiarity with Hebrew.
Familiarity with Perl is also assumed for the Perl code examples.

2 Hspell’s approach

2.1 Assumptions

Keeping in mind a few assumptions can help the reader better understand Hspell’s approach
(please read this a few times before crying out “why doesn’t Hspell do ... 77):

e Hspell is the labor-of-love of two individuals - it is not a commercial enterprise with
dozens or employees or a twenty-year magnum opus. In fact, my original estimate
was that Hspell would be done in 2 person-months. This estimate has proved to be
somewhat optimistic, but even if the final version will have taken 6 months of work,
that is nothing compared to the 100 person-years that the Rav-Millim project boasts
on its web-site [7], for example.

e Hspell’s raison d’étre is being a spell-checker for nigqud-less text. While we have ideas
on how to later extend this project, such as to analyze syntax, understand and add
niqqud, and a full dictionary (definitions or translations), these will not be done in this
phase of the project.

A spell-checker checks words one at a time, without trying to understand context.
This brings about, and even more so in Hebrew than in languages like English, false
negatives, i.e., misspellings which are recognized as a valid word. But this will be true
of every Hebrew spell-checker that does not attempt to understand context.

e For Hspell to be free of other people’s copyright restrictions, it is a clean-room imple-
mentation, not based on other companies’ word lists, on other companies’ spell checkers,
or on copying of printed dictionaries.

However, we did use books like [1, 5, 6, 4] to help us design our algorithms, dictionaries
like [7, 3, 2] were used to verify certain words, and various Hebrew newspapers and
books, both printed and online, were used for inspiration and for finding words which
we still had not recognized.

2.2 Hspell’s basic structure

The most fundamental design decision behind Hspell is that it is word-list based. This means
that the Hspell spellchecker front-end is a rather dumb spell-checker, which basically only
needs to look up words in a list to see if they are valid. Very few, if any! , linguistic rules
need to be built into the spell-checker, and instead all the “brains” go into the word-Ilist
generators, the programs which generate the lists of valid words. Compare this to another
possible design, where a smart spell-checking algorithm looks at a given word, and checks if
it can be correctly derived from a known base-word.

Section 3 will discuss in greater depth the word-list generators, written in Perl. Our
current hspell front-end (also written in Perl) is unfortunately beyond the scope of this
article.

This basic structure is one of the most controversial aspects of Hspell’s design, but it was
chosen for good reason. Firstly, once a word-list is available, it could be used by existing
spell-checking applications like ispell[8] and aspell[9]. Secondly, we found forward word
derivation, finding for a given word its inflections (n»v)), easier to program than backward
derivation (given an inflection, trying to infer which rules could have been used to built it).
Forward derivation is also very easy to split into cases (different sections or the code, or even
separate programs, inflect different types of words), creating simpler and more readable code.

One of the downsides of a wordlist-based spell-checker is relatively-high memory use? for
holding the huge lists. This is why in the future, Hspell will most likely use an interesting
cross of the word list and the backward derivation approaches: The first step will be building
a word list, but the second step will be affiz-compressing it, automatically recognizing base
words which accept common sets of prefixes and and suffixes. The nice thing is that this
approach keeps all of the word-list approach’s benefits. In particular, all of the linguistic
information and algorithms are kept in the word-list generators. Also, existing spell checkers
like ispell? can already deal with affix-compressed word-lists efficiently.

2.3 Hspell’s spelling standard

As already mentioned, at this stage Hspell works only on niqqud-less texts. Hspell was de-
signed to be strictly compliant with the official niqqud-less spelling rules (”Typ»n 0N 20M510”,
colloquially known as ”"N5n2°m3”), published by the Academy of the Hebrew Language. This
is both an advantage and a disadvantage, depending on the user’s viewpoint. It’s an ad-
vantage because it encourages a correct and consistent spelling style throughout the user’s

the issue of particle prefixes will be discussed later

2disk usage of the word list was never an issue because of a compression technique we use that is beyond
the scope of this article. A 350,000 word list fits in about 90K - only about 2 bits per word!

3MySpell, the spellchecker used by OpenOffice.org and Moxzilla, is based on ispell and thus also supports
affix-compression. Affix-compression support in aspell does not yet exist, but is planned.

writing. It is a disadvantage, because a few of the Academia’s official spelling decisions are
relatively unknown to the general public. Future versions of Hspell might include an op-
tion for alternative spelling standards, and the design of the word-list generators makes this
relatively easy to do.

3 The word-list generators

3.1 Introduction

A list of valid Hebrew words cannot be built solely by collecting the list of words in available
Hebrew documents, because there is no way to guarantee that such a list will be correct (not
contain misspellings, useless proper names, slang, and so on), complete (certain inflections
might not appear in the chosen samples) or consistent in its spelling standard.

Instead our idea was to build (manually, using online texts for ideas and dictionaries for
verification) a list of base words, which are automatically inflected by a program, a word-list
generator which will generate all the valid inflections.

For example, the following input line says that 155 (dog) is a noun:

y 17>

In this specific case, no further hints are needed for correct inflection (this is discussed
below), and the word-list generator will output all the valid inflections:

D172 27> NA7D> 127D 12275 0D>27> 1272 127> 1Ma7> 'A7> -175 17D
DN'A7D |N'a7D na7> 1ra'7o 2'a7> 0>*a7> 'a7> ya7o 1ra7> ma7> =75 oA

It should be noted that the generated word list does not include the various forms of the
word with a particle. Particles are prefixes formed from the single Hebrew letters 2795 nwn
that function as prepositions, conjunctions or articles. For example, 3255 (our dogs) will be
found in the list, but »a%5wo (and when our dogs) will not.

This decision was made for a practical reason, as it allows the generated word list to
be an order of magnitude smaller than the list with all possible combinations of particles.
Instead of the the word list containing all the possible words with all the possible particles,
the hspell front end tries to remove possible particle prefixes from the words it checks. In the
first release, hspell always allowed every prefix for every word, but this is gradually being
improved; For example, while the definite article N makes sense on a noun, it does not on
the imperative form of a verb. Letting the front-end spell checker know which word accepts
which set of prefixes will in fact be the first stage towards affiz compression mentioned earlier.

Hspell now uses two separate word-list generators, both written in Perl: one that inflects
nouns and adjectives, and one that inflects verbs, and we will go into a little detail on the
first below. These inflectors can also feed on one another (e.g., the verb inflector generates
gerunds, which are nouns and can be further inflected as such), and to the generated word
list we later also add a list of extra words, like various prepositions, proper names, numbers,
acronyms, and other miscellaneous words that cannot be inflected.

Despite their name, the word-list generators are capable of much more than just creating
a list of valid Hebrew words, and are useful not only for spell-checking. They can write
detailed output explaining exactly how each inflection was created, and this output could be
used for everything from finding the reasonable set of particle prefixes that a word accepts,
to a full morphological analysis of given words.

In the rest of this section we will explain, in a little more details, how noun inflection
works. Unfortunately, it is beyond the scope of this article to cover the complete details, and
we will also not be able to cover adjective or verb inflection at all.

3.2 Noun inflection

The noun and adjective inflector is a Perl program called wolig.pl* that works on an input
file listing base words (nouns and adjectives), and possible hints on how to inflect them.

It is obvious that wolig does need hints for correct inflections. The easiest hints to
understand the need for are pluralization hints: how could wolig possibly know that while
the plural of §1p is 09, the plural of 9y is Mmow? Or that the pair mpw,0omPv is different
from MmN, N? It can’t. To get these words correctly inflected the input file should
contain the lines:

nLy qy
0,y NN'Y

The hint (y) tells wolig that this a noun (not an adjective), and the m or o> tells it which
plural form is appropriate for that word. Other supported pluralization types:

nr,y nlun
NIN,Y NAX7
0",y 1M

Tn4y Wy
NnNa=0'a11y Nna

Where o» refers to the pair-plural (which in niqqud-less spelling will indeed look like o»),
and 7 says there is no plural form for this word. In the last example, the word has a
completely irregular plural, so it is assigned explicitly, and the rest of the plural inflections
will be automatically derived from it. Some words have more than one valid pluralization:

"0,y wUTin
0", nLy nyv

0', NI,y 117
D'WIX=0'11,0%,Y WU'N
NINSY=0'11,0",NI,Y NOY

This hint format, a flexible and human-readable comma-separated list of flags and assign-
ments, made it easy for us to gradually add more flags and to more easily write (and later
read) our input file. In Perl, understanding this sort of hint list is easy, with code like this
splitting a single line into the base word, $word and an associative array %opt:

4originally meaning “WOrdLIst Generator”

($word, $optstring)=split;

undef %opts;

foreach $opt (split /,/o, $optstring){
($opt, $val) = (split /=/o, $opt);
$val = 1 unless defined $val;
$opts{$opt}=$val;

}

And later in the code the hints about the current word are queried with statements like
if ($opts{"IN"}) or my $plural=$opts{"12'D"}

While wolig needs hints to inflect some nouns correctly, about 90 percent of the nouns
do not need any hint other than the ”y” saying this is a noun. This is because most of the
time in Hebrew the plural form can be guessed just by looking at the last letter (or letters)
of the singular. For example:

551 ™on
mMoon noon
mImo HIMd
MM D
DI NN PN INPINN

The choice of plural form is not the only type of hint that might be needed, unfortunately.
Hebrew has many complications when inflecting nouns with vowels, like vowels being changed
or disappearing completely, and a few of these complications remain also for niqqud-less
spelling®. Other words have irregularities in some of their inflections. It is beyond the scope
of this article to get into all these problems and cover all the cases, so instead we will just
show some examples without justification (each input line is followed by the list of inflections
generated from it):

N_ Y,y NN
DN'IN [N'aN ANaN NN [DN'aN DDN'N Y20 NN 1NN NN —N'aN NN
PRIN'N [D'TUN'AN DD'NIN'IN 1'NINAN 'NINAN 1IPDINN "NIN‘an —nin'an nin‘an
DA'NINN [A'NINAN A'NINAN
I__Tax,y 7nd
D7NID |7N1D A7NID 17012 [27N1D DD7NID 17N1D 17N1D 17N1D "7N1D =711 7N1D
DA'7NID [A'7NID AY7ND 7N [2'7N1D DDY7NID "7ND '7ND 117N M7ND —'7NID 0'7ND
'__TAN,NILY |ND'Y
DIDY [INDY NANDY 11INDY [211NDY 0DADY JIIDY 1INDY 1121NDY NDY —|INDY [ND'Y
[2'NIINDY 0DD'NIINDY 1'NIRINDY TNRNDY IININDY "NIRINSDY —NIRINDY NRINDY
DN'NIINDY ['NIINDY 'NIINDY 'NIRINDY
n__710,0',y nanN
D1 |21 N2 12N [2210 022N 1210 12N 122N 2N 102N —nan nan
DN'21N N2 22N 2N 2N 022N 172N 12N 122N AN —an 0an
NX__TNI'n,Y NX
DN'NX ['NX D'NX PAX [2'NX DD'NAX P'NX PNX IPNX 'NX —'NX DX

Sluckily for us, in some cases the Academia’s official niqgqud-less spelling rules save us from dealing with
certain potential exceptions. For example, the plural of 1y (goat) is Dy, not ©vy with an extra yod.

DA'NX ['NX N'NX PNX [2'NX DD'NX J'NX JNX IPNX "NXR —'NX D'NX
[U__TnI'n,n"y ¥

DIV [I'Y NIV 1Y DIV DI 'Y 1Y 111 Y — Y |[Y

DNV [NI'Y DITY PTY DY DDM'Y PN I 1Y MY 1Y DPANY
TN__'R,Y A0

DNMIAD [NMIAD NNIAD AN [2MIAN DDA PIAN 1IAN 111AD MIAN =P DN
D", T'N'_NI'0I__I'N,Y 1INX

DNMINKX [NMINX NAINX PANKX [DINX DDMINX 1PINX PAINK INX PINK =N 0MINK 1INK
PND=70D1,'ND=T191,Y IND

DINO [IIND NHIND IIND |21ND DDIND N0 N0 1NN N0 —I'ND I'MD

DN'IINO [A'1IND NN FIND [2'1IND D'IIND 1IN0 PIND 12'1IND "IIND —'IND D1IND
NIN'22=0'>N01,N1N2a=0'11,Y N2

DNI22 [NI22 NNI2A NN22 [DN122 DONIAA JNI22 1NN 1IN122 'NNA2 —NN2x NN

N'NIN'A2 PN [D'NI1'22 02N 17N PN 1PN PN —NINA NNaa

DN'NIN'AA [N'NINR2A2

In addition to dealing with, or guessing, the various hints, and generating the correct
inflections based on them, the wolig program also needs to deal with the correct rules of
niqqud-less spelling. For example, the correct construct-state (7093) form of map is “n»p,
because the rules say that a consonant yod is usually doubled, but not next to a vowel letter
(in this case, the n).

The way wolig deals with niqqud-less spelling rules is simple, and yet very powerful. The
idea is that when outputting each word, wolig runs on it a postprocessing function outword.
In addition to correcting final forms of letters in the middle of the word, outword takes
special (non-Hebrew) characters, like a “y” signifying a consonant yod, and converts them to
the correct Hebrew letters (in this case, a single or double yod) according to the rules. The
Academia’s spelling rules were directly converted to the form of Perl substitutions, and part
of the rule for “y” looks like this:

$word =" s/ (?<=["nyD)y(?=["nynl|$)/»/go;
$word =" s/y/>/go; # otherwise, just one yod.

This is just a small part of the rules in outword — the full rules deal with with the
characters Y, y, h, w, i, e, a, and are heavily commented to explain what they mean, and
where these rules come from, so we will not discuss more of them here.

But where do these special characters y, w, etc., come from? The user may use them
when entering input base-words to make sure that wolig knows which yods and waws are
consonants and which are vowels, but in most cases this is unnecessary: the user can input
the words in the standard niqqud-less spelling, and a function inword is run on these words
to try to guess where these special characters are appropriate. To return to the example
above, when the user enters the nouns m9p, inword changes it into nyap. Later, the normal
inflection algorithm produces the construct-state form -ny9p, and when outword is run on
that, - p is output, just like we wanted.

wolig can also inflect adjectives, marked by the n flag. These also have an interesting
selection of possible hints, which we would not be able to cover here. They are explained in
the beginning of the wolig.dat input file, and also in the heavily commented code.

4 Lessons learned

Our word-list based approach to Hebrew spell-checking proved viable. Writing the word-list
generators in Perl proved an excellent idea — it it allowed us to concentrate more on ideas
and techniques, and less on programming details, and its powerful regular expressions and
other constructs allowed the code to remain simple and straightforward.

The decision to write the actual front-end spell-checker, hspell in Perl, is more ques-
tionable. On one hand it allowed us to very quickly (just a few hours for the first version!)
create something that worked, and actually worked surprisingly well. On the other hand, the
current Perl implementation is a memory hog and very slow to start (reading the word lists
into a huge hash table), and so is in the process of being rewritten in C, and using a different
search algorithm (radix-tree instead of a hash table). Even this may not be unnecessary,
when we write code that does affix-compression on our generated word lists and give it to
existing, general-purpose, spell-checkers.

References

1] D7D WITPR .NANIT 1NN 7VI9N NI PN T
2] 1995 .DIINA [17'0 W0 >TIN LN MHVIY
3] .2000 .72 M2V (1700 AWV DNIIN
4] 1942 00 YN N2V IY7D ZITET P2 YT
5] .1953 00 2N 07w 0'7U91 NI7 9P73 IINY
6] .1960 ,00 Y2INY .D7WN NINYN NI7 S9P72 IRY
[7] Choueka et al. Rav milim. http://www.ravmilim.co.il/.

[

8] Goeff Kuennig et al. International ispell.
http://fmg-www.cs.ucla.edu/fmg-members/geoff/ispell.html.

9] Kevin Atkinson et al. Gnu aspell.
http://aspell.sourceforge.net/.

[10] Linus Torvalds et al. The Linux kernel. http://www.kernel.org/.

[11] Nadav Har'EL Ivrix project — call for participation.
http://www.ivrix.org.il/announcements/1.html, June 1999.

[12] Richard Stallman. Initial announcement — Gnu project.
http://www.fsf.org/gnu/initial-announcement.html,
January 1984.

