
Hspell's Short Road,

from Ideas into Perl Code

Nadav Har'El

�

May 11, 2003

y

Abstra
t

Hspell is a free Hebrew linguisti
 proje
t, whose primary obje
tive was to
reate

a free Hebrew spell-
he
ker. In this paper we shall give a short introdu
tion to the

problem of Hebrew spell-
he
king, highlight our approa
h, and then fo
us on one part

of the
ode, the noun in
e
tor, giving examples and explaining why Perl was
hosen

from day one as the language used by this proje
t. We will show how Perl allowed us

very qui
k prototyping, and how its built-in and powerful string-handling
apabilities

allowed us to easily transfer our linguisti
 ideas into
ode.

1 Introdu
tion

The term free software was adopted [12℄ by Ri
hard Stallman in 1984, for software whose

authors de
ided to share it with the rest of the world, freely, as well as to give the users the

freedom to see the program's sour
e
ode, modify it, and share the original program or the

modi�ed versions with others.

Sin
e then, many people wrote more and more free software. Perl, the topi
 of this

onferen
e is one example of free software. A major boost to free software
ame in 1991

when Linus Torvalds wrote the �rst
omplete free kernel, Linux [10℄. Later
ame \Linux

distributions", large
olle
tions of free software meant to be easy to install by end users,

user-friendly desktop environments (like KDE and Gnome), and software that desktop users

have
ome to expe
t, like oÆ
e suites.

However, until re
ently, typi
al Israeli users were unable to swit
h over to free software

be
ause of the la
k of Hebrew support throughout the system. In June of 1999, the author

(Nadav Har'El) expressed the need for better Hebrew support in free software and
reated

the Ivrix mailing list [11℄. By January 2000, it be
ame
lear that while support for Hebrew

was planned in the big free software proje
ts (su
h as Web browsers, desktop environments

and word pro
essors), there were a few Hebrew-spe
i�
 programs that were not likely to

�

The work des
ribed here was a joint e�ort with Dan Kenigsberg. For more information, see the proje
t's

website, http://www.ivrix.org.il/proje
ts/spell-
he
ker/

y

�rst appeared in pro
eedings of Yet Another Perl Conferen
e, Haifa, May 2003.

1

mira
ulously appear. One of these important missing pie
es was a Hebrew spell-
he
ker, and

so we (Dan Kenigsberg and Nadav Har'El) set out to write one.

Setting our sights on a modest initial goal and
hoosing Perl for the proje
t's
ode allowed

us to produ
e a prototype in about a week. This prototype only re
ognized a tiny minority of

the Hebrew language, and did not in
lude a usable front-end, but it proved that our approa
h

was viable and had a lot of potential.

After this prototype, the proje
t was abandoned until we returned to working on it in

O
tober of 2002. Less than two months later, the �rst fully fun
tional release was made,

re
ognizing a useful per
entage of the
orre
t Hebrew words. Perl's string-handling power

and its simpli
ity made it easy for us to extend the original prototype, and to spend our time

and e�orts worrying about linguisti
 issues, rather than spending them on programming

details. Later, when we found existing spell-
he
king front ends unsuitable for our needs at

the time, Perl allowed us to write a di�erent one in a mere few hours.

This arti
le attempts to give an outline of how the Hspell spell-
he
ker works, and a taste

of some te
hniques and Perl
ode used to implement one part of the whole system, the noun

in
e
tor. Se
tion 2 will give a short introdu
tion to our approa
h for Hebrew spell-
he
king.

Se
tion 3 will explain in a little more detail one important part of the Hspell
ode, the

noun-in
e
tor, written (as was the rest of the
ode) in Perl.

Understanding se
tion 3 and the examples it
ontain requires familiarity with Hebrew.

Familiarity with Perl is also assumed for the Perl
ode examples.

2 Hspell's approa
h

2.1 Assumptions

Keeping in mind a few assumptions
an help the reader better understand Hspell's approa
h

(please read this a few times before
rying out \why doesn't Hspell do ... ?"):

� Hspell is the labor-of-love of two individuals - it is not a
ommer
ial enterprise with

dozens or employees or a twenty-year magnum opus. In fa
t, my original estimate

was that Hspell would be done in 2 person-months. This estimate has proved to be

somewhat optimisti
, but even if the �nal version will have taken 6 months of work,

that is nothing
ompared to the 100 person-years that the Rav-Millim proje
t boasts

on its web-site [7℄, for example.

� Hspell's raison d'être is being a spell-
he
ker for niqqud-less text. While we have ideas

on how to later extend this proje
t, su
h as to analyze syntax, understand and add

niqqud, and a full di
tionary (de�nitions or translations), these will not be done in this

phase of the proje
t.

A spell-
he
ker
he
ks words one at a time, without trying to understand
ontext.

This brings about, and even more so in Hebrew than in languages like English, false

negatives, i.e., misspellings whi
h are re
ognized as a valid word. But this will be true

of every Hebrew spell-
he
ker that does not attempt to understand
ontext.

� For Hspell to be free of other people's
opyright restri
tions, it is a
lean-room imple-

mentation, not based on other
ompanies' word lists, on other
ompanies' spell
he
kers,

or on
opying of printed di
tionaries.

2

However, we did use books like [1, 5, 6, 4℄ to help us design our algorithms, di
tionaries

like [7, 3, 2℄ were used to verify
ertain words, and various Hebrew newspapers and

books, both printed and online, were used for inspiration and for �nding words whi
h

we still had not re
ognized.

2.2 Hspell's basi
 stru
ture

The most fundamental design de
ision behind Hspell is that it is word-list based. This means

that the Hspell spell
he
ker front-end is a rather dumb spell-
he
ker, whi
h basi
ally only

needs to look up words in a list to see if they are valid. Very few, if any

1

, linguisti
 rules

need to be built into the spell-
he
ker, and instead all the \brains" go into the word-list

generators, the programs whi
h generate the lists of valid words. Compare this to another

possible design, where a smart spell-
he
king algorithm looks at a given word, and
he
ks if

it
an be
orre
tly derived from a known base-word.

Se
tion 3 will dis
uss in greater depth the word-list generators, written in Perl. Our

urrent hspell front-end (also written in Perl) is unfortunately beyond the s
ope of this

arti
le.

This basi
 stru
ture is one of the most
ontroversial aspe
ts of Hspell's design, but it was

hosen for good reason. Firstly, on
e a word-list is available, it
ould be used by existing

spell-
he
king appli
ations like ispell[8℄ and aspell[9℄. Se
ondly, we found forward word

derivation, �nding for a given word its in
e
tions (úåéèð), easier to program than ba
kward

derivation (given an in
e
tion, trying to infer whi
h rules
ould have been used to built it).

Forward derivation is also very easy to split into
ases (di�erent se
tions or the
ode, or even

separate programs, in
e
t di�erent types of words),
reating simpler and more readable
ode.

One of the downsides of a wordlist-based spell-
he
ker is relatively-high memory use

2

for

holding the huge lists. This is why in the future, Hspell will most likely use an interesting

ross of the word list and the ba
kward derivation approa
hes: The �rst step will be building

a word list, but the se
ond step will be aÆx-
ompressing it, automati
ally re
ognizing base

words whi
h a

ept
ommon sets of pre�xes and and suÆxes. The ni
e thing is that this

approa
h keeps all of the word-list approa
h's bene�ts. In parti
ular, all of the linguisti

information and algorithms are kept in the word-list generators. Also, existing spell
he
kers

like ispell

3

an already deal with aÆx-
ompressed word-lists eÆ
iently.

2.3 Hspell's spelling standard

As already mentioned, at this stage Hspell works only on niqqud-less texts. Hspell was de-

signed to be stri
tly
ompliant with the oÆ
ial niqqud-less spelling rules ("ãå÷éðä øñç áéúëä",

olloquially known as "àìî áéúë"), published by the A
ademy of the Hebrew Language. This

is both an advantage and a disadvantage, depending on the user's viewpoint. It's an ad-

vantage be
ause it en
ourages a
orre
t and
onsistent spelling style throughout the user's

1

the issue of parti
le pre�xes will be dis
ussed later

2

disk usage of the word list was never an issue be
ause of a
ompression te
hnique we use that is beyond

the s
ope of this arti
le. A 350,000 word list �ts in about 90K - only about 2 bits per word!

3

MySpell, the spell
he
ker used by OpenOÆ
e.org and Mozilla, is based on ispell and thus also supports

aÆx-
ompression. AÆx-
ompression support in aspell does not yet exist, but is planned.

3

writing. It is a disadvantage, be
ause a few of the A
ademia's oÆ
ial spelling de
isions are

relatively unknown to the general publi
. Future versions of Hspell might in
lude an op-

tion for alternative spelling standards, and the design of the word-list generators makes this

relatively easy to do.

3 The word-list generators

3.1 Introdu
tion

A list of valid Hebrew words
annot be built solely by
olle
ting the list of words in available

Hebrew do
uments, be
ause there is no way to guarantee that su
h a list will be
orre
t (not

ontain misspellings, useless proper names, slang, and so on),
omplete (
ertain in
e
tions

might not appear in the
hosen samples) or
onsistent in its spelling standard.

Instead our idea was to build (manually, using online texts for ideas and di
tionaries for

veri�
ation) a list of base words, whi
h are automati
ally in
e
ted by a program, a word-list

generator whi
h will generate all the valid in
e
tions.

For example, the following input line says that áìë (dog) is a noun:

ò áìë

In this spe
i�

ase, no further hints are needed for
orre
t in
e
tion (this is dis
ussed

below), and the word-list generator will output all the valid in
e
tions:

íáìë ïáìë äáìë åáìë ïëáìë íëáìë êáìë êáìë åðáìë éáìë -áìë áìë

íäéáìë ïäéáìë äéáìë åéáìë ïëéáìë íëéáìë êééáìë êéáìë åðéáìë ééáìë -éáìë íéáìë

It should be noted that the generated word list does not in
lude the various forms of the

word with a parti
le. Parti
les are pre�xes formed from the single Hebrew letters á"ìëå äùî

that fun
tion as prepositions,
onjun
tions or arti
les. For example, åðéáìë (our dogs) will be

found in the list, but åðéáìëùëå (and when our dogs) will not.

This de
ision was made for a pra
ti
al reason, as it allows the generated word list to

be an order of magnitude smaller than the list with all possible
ombinations of parti
les.

Instead of the the word list
ontaining all the possible words with all the possible parti
les,

the hspell front end tries to remove possible parti
le pre�xes from the words it
he
ks. In the

�rst release, hspell always allowed every pre�x for every word, but this is gradually being

improved; For example, while the de�nite arti
le ä makes sense on a noun, it does not on

the imperative form of a verb. Letting the front-end spell
he
ker know whi
h word a

epts

whi
h set of pre�xes will in fa
t be the �rst stage towards aÆx
ompressionmentioned earlier.

Hspell now uses two separate word-list generators, both written in Perl: one that in
e
ts

nouns and adje
tives, and one that in
e
ts verbs, and we will go into a little detail on the

�rst below. These in
e
tors
an also feed on one another (e.g., the verb in
e
tor generates

gerunds, whi
h are nouns and
an be further in
e
ted as su
h), and to the generated word

list we later also add a list of extra words, like various prepositions, proper names, numbers,

a
ronyms, and other mis
ellaneous words that
annot be in
e
ted.

4

Despite their name, the word-list generators are
apable of mu
h more than just
reating

a list of valid Hebrew words, and are useful not only for spell-
he
king. They
an write

detailed output explaining exa
tly how ea
h in
e
tion was
reated, and this output
ould be

used for everything from �nding the reasonable set of parti
le pre�xes that a word a

epts,

to a full morphologi
al analysis of given words.

In the rest of this se
tion we will explain, in a little more details, how noun in
e
tion

works. Unfortunately, it is beyond the s
ope of this arti
le to
over the
omplete details, and

we will also not be able to
over adje
tive or verb in
e
tion at all.

3.2 Noun in
e
tion

The noun and adje
tive in
e
tor is a Perl program
alled wolig.pl

4

that works on an input

�le listing base words (nouns and adje
tives), and possible hints on how to in
e
t them.

It is obvious that wolig does need hints for
orre
t in
e
tions. The easiest hints to

understand the need for are pluralization hints: how
ould wolig possibly know that while

the plural of óå÷ is íé�å÷, the plural of óåò is úå�åò? Or that the pair úåøéù,íéúåøéù is di�erent

from úåøéç,úåéåøéç? It
an't. To get these words
orre
tly in
e
ted the input �le should

ontain the lines:

úå,ò óåò

íé,ò úåøéù

The hint (ò) tells wolig that this a noun (not an adje
tive), and the úå or íé tells it whi
h

plural form is appropriate for that word. Other supported pluralization types:

úåé,ò äðùî

úåà,ò äáö÷

íéé,ò áøâ

ãéçé,ò ïùò

úåðá=íéáø,ò úá

Where íéé refers to the pair-plural (whi
h in niqqud-less spelling will indeed look like íéé),

and ãéçé says there is no plural form for this word. In the last example, the word has a

ompletely irregular plural, so it is assigned expli
itly, and the rest of the plural in
e
tions

will be automati
ally derived from it. Some words have more than one valid pluralization:

íéé,íé,ò ùãåç

íéé,úå,ò äòù

íé,úå,ò øá÷

íéùðà=íéáø,íé,ò ùéà

úåú�ù=íéáø,íéé,úå,ò ä�ù

This hint format, a
exible and human-readable
omma-separated list of
ags and assign-

ments, made it easy for us to gradually add more
ags and to more easily write (and later

read) our input �le. In Perl, understanding this sort of hint list is easy, with
ode like this

splitting a single line into the base word, $word and an asso
iative array %opt:

4

originally meaning \WOrdLIst Generator"

5

($word,$optstring)=split;

undef %opts;

forea
h $opt (split /,/o, $optstring){

($opt, $val) = (split /=/o, $opt);

$val = 1 unless defined $val;

$opts{$opt}=$val;

}

And later in the
ode the hints about the
urrent word are queried with statements like

if($opts{"åú"}) or my $plural=$opts{"øáéí"}

While wolig needs hints to in
e
t some nouns
orre
tly, about 90 per
ent of the nouns

do not need any hint other than the "ò" saying this is a noun. This is be
ause most of the

time in Hebrew the plural form
an be guessed just by looking at the last letter (or letters)

of the singular. For example:

íéëìî êìî

úåëìî äëìî

úåøúåë úøúåë

úåéåîë úåîë

íéáø úøåö ïéà úåéøçà

The
hoi
e of plural form is not the only type of hint that might be needed, unfortunately.

Hebrew has many
ompli
ations when in
e
ting nouns with vowels, like vowels being
hanged

or disappearing
ompletely, and a few of these
ompli
ations remain also for niqqud-less

spelling

5

. Other words have irregularities in some of their in
e
tions. It is beyond the s
ope

of this arti
le to get into all these problems and
over all the
ases, so instead we will just

show some examples without justi�
ation (ea
h input line is followed by the list of in
e
tions

generated from it):

ú_øåîù,ò úéðç

íúéðç ïúéðç äúéðç åúéðç ïëúéðç íëúéðç êúéðç êúéðç åðúéðç éúéðç -úéðç úéðç

åéúåúéðç ïëéúåúéðç íëéúåúéðç êééúåúéðç êéúåúéðç åðéúåúéðç ééúåúéðç -úåúéðç úåúéðç

íäéúåúéðç ïäéúåúéðç äéúåúéðç

å_ãáà,ò ìúåë

íìúåë ïìúåë äìúåë åìúåë ïëìúåë íëìúåë êìúåë êìúåë åðìúåë éìúåë -ìúåë ìúåë

íäéìúåë ïäéìúåë äéìúë åéìúë ïëéìúåë íëéìúåë êééìúë êéìúë åðéìúë ééìúë -éìúåë íéìúë

é_ãáà,úå,ò ïåø�éò

íðåø�ò ïðåø�ò äðåø�ò åðåø�ò ïëðåø�ò íëðåø�ò êðåø�ò êðåø�ò åððåø�ò éðåø�ò -ïåø�ò ïåø�éò

ïëéúåðåø�ò íëéúåðåø�ò êééúåðåø�ò êéúåðåø�ò åðéúåðåø�ò ééúåðåø�ò -úåðåø�ò úåðåø�ò

íäéúåðåø�ò ïäéúåðåø�ò äéúåðåø�ò åéúåðåø�ò

ä_ìåâñ,íé,ò äáåø

íáåø ïáåø äáåø åáåø ïëáåø íëáåø êáåø êáåø åðáåø éáåø åäáåø -äáåø äáåø

íäéáåø ïäéáåø äéáåø åéáåø ïëéáåø íëéáåø êééáåø êéáåø åðéáåø ééáåø -éáåø íéáåø

çà_ãçåéî,ò çà

íäéçà ïäéçà äéçà åéçà ïëéçà íëéçà êéçà êéçà åðéçà éçà -éçà çà

5

lu
kily for us, in some
ases the A
ademia's oÆ
ial niqqud-less spelling rules save us from dealing with

ertain potential ex
eptions. For example, the plural of æò (goat) is íéæò, not íéæéò with an extra yod.

6

íäéçà ïäéçà äéçà åéçà ïëéçà íëéçà êééçà êéçà åðéçà ééçà -éçà íéçà

ïù_ãçåéî,íéé,ò ïù

íðéù ïðéù äðéù åðéù ïëðéù íëðéù êðéù êðéù åððéù éðéù -ïù ïù

íäéðéù ïäéðéù äéðéù åéðéù ïëéðéù íëéðéù êééðéù êéðéù åðéðéù ééðéù -éðéù íééðéù

ãéçé_ïéà,ò øåâî

íäéøåâî ïäéøåâî äéøåâî åéøåâî ïëéøåâî íëéøåâî êééøåâî êéøåâî åðéøåâî ééøåâî -éøåâî íéøåâî

íéé,ãéçé_úåéèð_ïéà,ò øåçà

íäéøåçà ïäéøåçà äéøåçà åéøåçà ïëéøåçà íëéøåçà êééøåçà êéøåçà åðéøåçà ééøåçà -éøåçà íééøåçà øåçà

åéúñ=êîñð,åéúñ=ãø�ð,ò åúñ

íååúñ ïååúñ äååúñ ååúñ ïëååúñ íëååúñ êååúñ êååúñ åðååúñ éååúñ -åéúñ åéúñ

íäéååúñ ïäéååúñ äéååúñ åéååúñ ïëéååúñ íëéååúñ êééååúñ êéååúñ åðéååúñ ééååúñ -éååúñ íéååúñ

úåøéáâ=íéëîñð,úåøáâ=íéáø,ò úøáâ

íúøáâ ïúøáâ äúøáâ åúøáâ ïëúøáâ íëúøáâ êúøáâ êúøáâ åðúøáâ éúøáâ -úøáâ úøáâ

äéúåøéáâ åéúåøéáâ ïëéúåøéáâ íëéúåøéáâ êééúåøéáâ êéúåøéáâ åðéúåøéáâ ééúåøéáâ -úåøéáâ úåøáâ

íäéúåøéáâ ïäéúåøéáâ

In addition to dealing with, or guessing, the various hints, and generating the
orre
t

in
e
tions based on them, the wolig program also needs to deal with the
orre
t rules of

niqqud-less spelling. For example, the
orre
t
onstru
t-state (êîñð) form of äéø÷ is -úééø÷,

be
ause the rules say that a
onsonant yod is usually doubled, but not next to a vowel letter

(in this
ase, the ä).

The way wolig deals with niqqud-less spelling rules is simple, and yet very powerful. The

idea is that when outputting ea
h word, wolig runs on it a postpro
essing fun
tion outword.

In addition to
orre
ting �nal forms of letters in the middle of the word, outword takes

spe
ial (non-Hebrew)
hara
ters, like a \y" signifying a
onsonant yod, and
onverts them to

the
orre
t Hebrew letters (in this
ase, a single or double yod) a

ording to the rules. The

A
ademia's spelling rules were dire
tly
onverted to the form of Perl substitutions, and part

of the rule for \y" looks like this:

$word =~ s/(?<=[^éåy℄)y(?=[^éåyä℄|$)/éé/go;

$word =~ s/y/é/go; # otherwise, just one yod.

This is just a small part of the rules in outword | the full rules deal with with the

hara
ters Y, y, h, w, i, e, a, and are heavily
ommented to explain what they mean, and

where these rules
ome from, so we will not dis
uss more of them here.

But where do these spe
ial
hara
ters y, w, et
.,
ome from? The user may use them

when entering input base-words to make sure that wolig knows whi
h yods and waws are

onsonants and whi
h are vowels, but in most
ases this is unne
essary: the user
an input

the words in the standard niqqud-less spelling, and a fun
tion inword is run on these words

to try to guess where these spe
ial
hara
ters are appropriate. To return to the example

above, when the user enters the nouns äéø÷, inword
hanges it into äyø÷. Later, the normal

in
e
tion algorithm produ
es the
onstru
t-state form -úyø÷, and when outword is run on

that, -úééø÷ is output, just like we wanted.

wolig
an also in
e
t adje
tives, marked by the ú
ag. These also have an interesting

sele
tion of possible hints, whi
h we would not be able to
over here. They are explained in

the beginning of the wolig.dat input �le, and also in the heavily
ommented
ode.

7

4 Lessons learned

Our word-list based approa
h to Hebrew spell-
he
king proved viable. Writing the word-list

generators in Perl proved an ex
ellent idea | it it allowed us to
on
entrate more on ideas

and te
hniques, and less on programming details, and its powerful regular expressions and

other
onstru
ts allowed the
ode to remain simple and straightforward.

The de
ision to write the a
tual front-end spell-
he
ker, hspell in Perl, is more ques-

tionable. On one hand it allowed us to very qui
kly (just a few hours for the �rst version!)

reate something that worked, and a
tually worked surprisingly well. On the other hand, the

urrent Perl implementation is a memory hog and very slow to start (reading the word lists

into a huge hash table), and so is in the pro
ess of being rewritten in C, and using a di�erent

sear
h algorithm (radix-tree instead of a hash table). Even this may not be unne
essary,

when we write
ode that does aÆx-
ompression on our generated word lists and give it to

existing, general-purpose, spell-
he
kers.

Referen
es

[1℄ .í"ùú ,ïåîã÷à .äîéøæ éîéùøúá ìòå�ä úééèð .ïðøåà éæåò

[2℄ .1995 .äååää ïåìéî .øåùéî éëãøîå èäá äðùåù

[3℄ .2000 .æëøîä éøáòä ïåìîä .ïùåù-ïáà íäøáà

[4℄ .1942 ,ñî ïáåàø .úéøáòä ïåùìä ÷åã÷ã .ïéìé ãåã

[5℄ .1953 ,ñî ïáåàø .íìùä íéìò�ä çåì .éì÷øá ìåàù

[6℄ .1960 ,ñî ïáåàø .íìùä úåîùä çåì .éì÷øá ìåàù

[7℄ Choueka et al. Rav milim. http://www.ravmilim.
o.il/.

[8℄ Goe� Kuennig et al. International ispell.

http://fmg-www.
s.u
la.edu/fmg-members/geoff/ispell.html.

[9℄ Kevin Atkinson et al. Gnu aspell.

http://aspell.sour
eforge.net/.

[10℄ Linus Torvalds et al. The Linux kernel. http://www.kernel.org/.

[11℄ Nadav Har'El. Ivrix proje
t |
all for parti
ipation.

http://www.ivrix.org.il/announ
ements/1.html, June 1999.

[12℄ Ri
hard Stallman. Initial announ
ement | Gnu proje
t.

http://www.fsf.org/gnu/initial-announ
ement.html,

January 1984.

8

