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Abstract

Currently, there are two competing factions of cloud
computing — IaaS and PaaS. With IaaS, application de-
velopers work with a number of virtual machines, each
with its own operating system. PaaS replaces this by a
collection of cloud-wide services which applications can
use.

In this paper we make, and justify, the analogy of PaaS
being the cloud’soperating system. We claim that as
PaaS is maturing, every cloud application will use PaaS
services, making the application much easier to write,
more flexible and often more efficient. We explain why
PaaS is better implemented as part of the cloud system,
not the application, and is therefore better thought of as
an operating system than a library. We predict that writ-
ing new cloud applications on IaaS (without PaaS) will
soon be just as uncommon as applications that run on a
computer without an operating system.

We explore the details of this analogy, explore how
PaaS will need to evolve to become more effective in its
new role of the cloud operating system, and propose new
directions for operating system research in the cloud era.

1 Introduction

Cloud computing is becoming an increasingly important
technology on the Internet. It allows providers of on-
line services to pay exactly for the amount of computing
resources they need, when they need it. Cloud comput-
ing reduces the barrier-to-entry for new online services.
It allows services (cloud applications) to scale from a
handful to millions of users and to cope with fluctuating
demand without needing to plan or buy for the peak load.

Amazon’s EC2 (Elastic Compute Cloud), announced
in 2006, was the first cloud computing solution avail-
able to online service developers. Its model, later dubbed
IaaS(Infrastructure-as-a-Service), was to present appli-
cation developers with virtual x86 machines (VMs). The

developer gets as many VMs as desired, each running a
traditional operating system of his choice such as Linux
or Windows, and runs on it his own application code.

x86 VMs give the application developer full control,
but once the application scales to many VMs, writing
the application to efficiently deploy and utilize all them
is very difficult. For example, when Amazon needed
a highly scalable and efficient database for its internal
applications, they designed Dynamo [2], a new breed
of key-value store. Since most of Amazon EC2’s cus-
tomers were unable to build, let alone design, such a
key-value store themselves, Amazon soon started offer-
ing a scalable database service, calledSimpleDB, to their
customers. Afterwards, Amazon and the other cloud
providers started to add more and more new services for
their IaaS customers’ use.

Some of these additional cloud services also include
mechanisms to run applicationcode. For example,
Google’s App Engine allows application developers to
run code in high-level languages such as Java or Python,
in response to HTTP requests. Amazon’s Elastic MapRe-
duce is a MapReduce [1] framework for scalably running
user code on vast amounts of data. These code-running
mechanisms mean that applications can be run on the
cloud without any of the classic x86 VMs. This new ap-
proach to building cloud applications was dubbedPaaS
(Platform-as-a-Service) — i.e., the cloud is a new plat-
form on which to build applications.

Much of the contemporary discussion about IaaS and
PaaS view these as two competing alternatives, each with
pros and cons. IaaS is viewed as very expressive, but
difficult to use, while PaaS is viewed as being limited in
expressiveness, and easy to use.

We begin this paper by arguing (Sections 2 and 3) that
PaaS can, and should, be considered the cloud’soperat-
ing system. We explore this analogy, and conclude that
soon, writing cloud applications on IaaS (without PaaS)
will be similar to programming without an operating sys-
tem — tedious with very little potential gains in terms



of expressiveness or performance, and therefore rarely
done.

We continue in Section 4 to make predictions, and pro-
pose new research directions, on how PaaS will need to
evolve to become more effective in its new role of the
cloud operating system.

Several recent papers [10, 14] also recognized the use-
fulness of a cloud-wide operating system of the type we
describe. The main contributions of this paper are: (1)
Our analysis in Section 3 of the parallels between PaaS
and an operating system, and (2) Our predictions and
proposals in Section 4, laying down new directions for
operating system research in the cloud era.

2 Why a Cloud Operating System

In a IaaS cloud the application developer needs to in-
stall a traditional operating system (such as Linux or Mi-
crosoft Windows) on each VM. But the features of these
single-machine operating systems become increasing ir-
relevant for the cloud application developers, who do not
use local devices, local filesystems, multiple local users
or sometimes even processes.

Instead, cloud-wide services are becoming increas-
ingly important. As mentioned above, development of
cloud applications can be greatly simplified by using
pre-built PaaS services, such as using a good existing
key-value store implementation instead of developing
one from scratch. An operating system simplifies pro-
gramming on a classical computer platform in much the
same way — applications can use simple system calls to
write to files, instead of implementing a filesystem from
scratch.

Cloud applications do not necessarily need to rely on
the cloud to provide these services. For example, if an
application on an IaaS cloud needs a key-value store, it
can deploy a few more VMs running a key-value store
implementation of its choice, e.g., the open-source Cas-
sandra [9]. This can be described asPaaS-over-IaaS.

However, we argue that there are several important
reasons why it is better that the cloud provider deploys
the PaaS services, not each tenant:

1. For many cloud tenants, even knowing which PaaS
implementation to deploy and how to set up the
VMs implementing it, is beyond their expertise.
Why should a person who knows how to program
simple applications be expected to install operating
systems and complex software packages?

2. Some PaaS services need to run on special hard-
ware. For example, an object store service such as
Amazon’s S3 or Openstack’s Swift needs to run on
machines with persistent local disks. Moreover, it

is the provider, not the tenant, who is aware of the
details of the underlying hardware, and can better
optimize the software for it.

3. The PaaS services can be run without an hypervisor,
improving their performance.

In other words, we disagree with the common ap-
proach of running PaaS on top of IaaS. Quite the
contrary — we argue that IaaS should just be an-
other PaaS service, allowing tenants to run legacy
workloads in virtual machines.

4. When tenants deploy x86 VMs to implement a PaaS
service, the cloud provider is not able to switch to
non-x86 architectures or other non-standard hard-
ware, even when such hardware might be cheaper
or more efficient for running a particular service.

5. A PaaS service deployed by the cloud provider can
be more effectively shared between tenants, reduc-
ing costs. This is very important for small tenants
(where, for example, a full VM for its key-value
store might be an overkill), but in many cases can
also be useful for larger tenants. CDNs are a good
example — tenant’s data is replicated in many ge-
ographical locations, but the tenant doesn’t need a
full VM in each location.

When individual tenants deploy PaaS components as
part of their application, PaaS can be likened to a library,
or a library operating system [3]. However, as we just ex-
plained, it is better that the cloud already includes these
PaaS services, and in that case they resemble a traditional
operating system, which all applications use.

3 The Operating System Analogy

In this section we explore various aspects of our anal-
ogy of PaaS services to those of a traditional operating
system. In the next section (Section 4), we will look
at what insights we can get from this analogy, and how
PaaS should evolve to be better at its new role of cloud
operating system.

System calls: Operating systems traditionally provide
applications withsystem calls, providing various services
such as reading and writing disk files, doing inter-process
communications, and communicating over the network.

For PaaS applications, most of these needs are met by
PaaS requests, which we will callcloud callsin analogy
with system calls. For example, cloud parallels to file
access include object stores (such as Amazon’s S3 and
Microsoft’s Azure Blob Storage), block stores (such as
Amazon’s EBS), and various distributed key-value stores
(such as Amazon’s SimpleDB and DynamoDB). Cloud
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parallels to inter-process communication include, for ex-
ample, message queues such as Amazon’s SQS.

Cloud calls are not serviced on the local machine, but
rather by some other node in the network, so the cloud
call mechanism will normally involve reliably sending
a network message, using REST [4] as in Amazon, or
some other RPC mechanism. However, this internal
mechanism will normally be hidden from the applica-
tion developer — who will instead get a programmatic
API, a library, for the programming language of choice.
For example, Google’s PaaS has APIs in Java, Python
and Go. Amazon’s PaaS services have REST and SOAP
APIs which can be used from any language, with exam-
ple code provided for several common languages. Sim-
ilarly, wrapping system calls in an API is also a com-
mon practice in traditional operating systems — e.g.,
Unix [16] has a C API for its system calls, documented
in section 2 of its programmer’s manual.

The system call API is important, because it allows
the operating system’s implementation to change, while
applications continue to run unmodified. For example,
in Linux much of the implementation of the scheduler,
file systems, network stack, etc., changed over the years,
but it still runs Linux applications because the system
calls haven’t changed. Similarly, a cloud might change
its underlying choice of processor architecture, hypervi-
sor, storage implementation, etc., but the users who use
the cloud operating system APIs needn’t care.

Processes:Operating systems run application code en-
capsulated inprocesses. The OS offers scheduling ser-
vices (when to run which process, on which CPU, etc.),
execution services (starting a new process running cer-
tain code), isolation between different processes — and
on the other hand, inter-process communication.

A cloud application also needs to run application code,
including both long-lived background processes (e.g.,
data analysis) and short-lived execution of code in re-
sponse to an event (e.g., an incoming HTTP request).

The cloud operating system will provide a notion of
cloud processesto encapsulate these threads of execu-
tion of application code. Just like a traditional operating
system makes it unnecessary for an application devel-
oper to worry about where or when to run each process,
so should the cloud operating system do with cloud pro-
cesses: The application developer doesn’t need to worry
on which machine these run, or how many of them run
in parallel.

Existing PaaS clouds suggest how cloud processes
would be used. Google App Engine “Runtime Environ-
ment” runs cloud processes (application-specified code)
in response to HTTP requests; There can be many of
these requests running in parallel, on many different ma-
chines, without the application knowing or caring. An-
other Google App Engine feature, ”Push Queues”, al-

lows the application to queue processes for execution —
these processes will eventually be run, at desired rate and
order, on potentially many different machines. The sys-
tem decides where to run each process, and ensures it
really does run to completion (retrying it if necessary
in case of crashes). The Heroku PaaS solution revolves
around cloud processes, which they call ”dynos”.

Programs and execution: An operating system also
handles program execution, i.e., starting a new process
running a given piece of application code.

The IaaS implementation of cloud processes (namely,
heavy long-lived VMs complete with a traditional oper-
ating system) is too heavy for many use cases. Much
lighter methods of safely running compiled user code ex-
ist, for example OS-level virtualization [8], system-call
interposition [6], and limited instruction sets [18].

Even better, to allow the cloud provider to experiment
with different processor architectures and not be limited
to the venerable x86 architecture, the cloud operating
system might encourage, or even mandate, that applica-
tion code be written in a high-level language. We call
such code acloud executable. Google App Engine, for
example, can only execute code in Java, Python or Go. It
has a further optimization, where loading a certain appli-
cation code on a machine where it recently ran can reuse
an already loaded process (known as a Servlet in the case
of Java) instead of starting a new one.

The idea of an operating system which can only run
user code written in high-level languages is not new to
the cloud. The Singularity operating system [7] can only
run CLR [11] bytecode, and while Android can run na-
tive code, it strongly encourages user code to be written
in Java compiled to Dalvik bytecode. However, we argue
that cloud executables needn’t be bytecode, and can be
the original source code — with the cloud operating sys-
tem deciding what to do with this source code, e.g., in-
terpreting it or compiling it into bytecode or native code.

Tenant isolation: One of the primary goals of operating
systems is to share resources, such as compute power,
storage capacity and network bandwidth, between differ-
ent users and applications. The original paper on UNIX
was titled “The UNIX Time-Sharing System” [16] to em-
phasize this fact.

Similarly, PaaS emphasizes multi-tenancy, as multiple
applications and application owners (tenants) access the
same services, but are isolated from each: Processes run-
ning for one tenant cannot access the processes, or the
data, of a different tenant, and application performance
is isolated in the sense that one application cannot nega-
tively impact the performance of a other applications.

External network: Another function of traditional op-
erating systems is to relay inbound network data to the
particular processes which own the relevant connection.
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PaaS clouds have a similar feature, where each end-
user’s connection is relayed to some cloud process on
some machine. The cloud tracks these connections, and
does load balancing and scaling as necessary.

File system:Operating systems offerfile systemsto pro-
vide applications with convenient and secure (tenant-
isolated) access to persistent storage.

Similarly, PaaS provides storage services for cloud ap-
plications. The API of these services does not have to re-
semble the familiar file API of traditional operating sys-
tem. For example, object store services (such as Ama-
zon’s S3 and Microsoft’s Azure Blob Storage) allow stor-
ing and retrieving whole files, but not modification to ex-
isting files, as this is enough for many cloud applications
and easier to make more scalable and reliable than the
traditional filesystem API. Various cloud database ser-
vices (such as Amazon’s SimpleDB and DynamoDB)
are also filesystem replacements, and there are additional
storage APIs such as the Google File System [5] with dif-
ferent use cases in mind (in this case, temporary storage
for MapReduce).

Inter-process communication:Another common func-
tion of operating systems isinter-process communication
(IPC), allowing different processes, which are normally
isolated, to efficiently communicate when required.

On the PaaS cloud, processes come and go, and run on
thousands of different machines, so PaaS usually encour-
ages asynchronous and anonymous, but reliable, IPC:
one process leaves instructions for other, unknown, pro-
cesses. One common example of cloud IPC are message
queues, such as Amazon’s Simple Queue Service (SQS).
MapReduce [1] uses temporary files stored in a Google
File System [5] as a form of IPC between cooperating
processes working on the same task.

We argue that PaaS IPC services should be the
only intra-cloud communication mechanism available to
cloud executables. These would not be aware of the low-
level network layers such as IP, just like UNIX executa-
bles are not aware of the internal mechanisms used to
implement pipes. We believe that the recent trend of net-
work virtualization [12] is an artifact of IaaS, and not
necessary for PaaS.

Daemons: A complete operating system typically in-
cludes, in addition to its kernel, variousdaemons, or
server processes, providing additional services such as
an HTTP server or a mail server. PaaS clouds also pro-
vide similar daemons. For example, Google App En-
gine ”Runtime Environment” runs application code in re-
sponse to HTTP requests, much like a traditional HTTP
daemon. Amazon’s Simple Email Service (SES) is an
email sending service, much like a traditional mail deliv-
ery daemons.

Accounting: Operating systems often track the amount

of resources consumed by each user, such as CPU time
(in application code and in the kernel), disk space and
accesses, and so on. The PaaS cloud similarly tracks re-
sources used by different tenants, and this information is
later used for billing the tenant.

4 Predictions and Recommendations

In this section, we consider how existing PaaS solutions
need to evolve, in order to be more effective in their new
role of cloud operating systems. We also suggest new
directions which we believe operating system research
should take in the cloud era.

Standardization: Today, each cloud provider presents
to application developers a very different set of PaaS
services. This makes it exceedingly difficult to write
portable PaaS-based cloud applications, leading many
developers to prefer developing for IaaS.

Because we believe that as PaaS will win over IaaS
(for reasons we explained in this paper), we predict an
inevitable move towards standardization of PaaS services
and PaaS APIs. Such standardization may come in sev-
eral forms: (1) The appearance of open-source PaaS
implementations, which many providers will use; (2)
Providers will agree on a standard PaaS API, doing for
the cloud operating system what Posix did for UNIX; and
(3) The appearance of compatibility or abstraction lay-
ers, allowing writing cloud applications that will work
on many different PaaS implementations.

A cloud kernel: Most operating systems try to keep a
clear separation between theirkernel, and a set of user-
space utilities and daemons which provide additional
useful services, but are written on top of the kernel’s
APIs (namely, the system calls), just as any other ap-
plication. For example, an HTTP daemon is just a user-
space program calling system calls like socket(), bind(),
accept(), read() and write(), and any user might run an al-
ternative HTTP daemon, without modifying the kernel.

In most existing PaaS implementations, this distinc-
tion is lost. They provide a hodgepodge of different ser-
vices, with no clear distinction of what constitutes the
basic set of services (the cloud OS kernel) on which the
other services, as well as the user applications, are built.

Cloud MapReduce [10] is a good demonstration that
given a few basic services in Amazon’s cloud (S3 ob-
ject store, SQS queue service, and threads on EC2 VMs),
a MapReduce feature can be easily built (in only 3,000
lines of code). This means that MapReduce can be left
out of the cloud operating system kernel, and instead may
be run by individual tenants over the more fundamental
services of the cloud operating system.

Similarly, both Amazon and Google have mail-
sending PaaS services, but these could be built using
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other simpler components such as Push Queues which
provide the required scalability and reliability — but not
the exact policy and the details of the SMTP protocol.

We believe that more research is necessary to deter-
mine a good set of fundamental PaaS services which
would constitute the kernel of tomorrow’s cloud OSs.

Expressive power: One of the oft-mentioned down-
sides of PaaS, compared to IaaS, is its lack of expressive
power: PaaS is great when it provides the services you
need, but when it doesn’t, you’re stuck.

Limiting applications’ expressiveness—making im-
portant things not doable without being part of the oper-
ating system—is the hallmark of abadoperating system.
A good operating system provides a rich set of broad
services, on which any application can be built. The ex-
pressiveness of modern operating systems is what caused
bare-metal (no OS) programming to all but disappear, but
the expressive power of PaaS still needs to improve for it
to be a better cloud operating system.

As an example, Google App Engine allows a cloud ap-
plication to run some code on HTTP requests. But what
if the application wants to serve a newly invented pro-
tocol, not HTTP? The cloud OS should have more gen-
eral cloud calls for listening for incoming requests, and
processing them in a scalable way. The HTTP-specific
daemon would be written using these cloud calls, and
application developers can opt to use a different one.

Low latency: To behave like system calls,cloud calls
must be always available, and have as low latency as
possible. Existing PaaS services such as Amazon’s Dy-
namo [2] have indeed been designed for high-availability
and fault tolerance. The Dynamo design also emphasizes
predictable low latency, ensuring low latency not just at
the average case, but also in the 99.9th percentile (when
200ms latencies are reported). While these numbers are
low enough for many applications, with more research
into hardware and software, they could be made much
lower. In their vision paper, Rumble et al. [17] explain
that It’s time for low latency, and that5 − 10µs remote
procedure calls across the data center are desirable, and
achievable with some improvements to existing network
and OS technology, and by relying on RAM instead of
magnetic disks [13]. Other papers explored different op-
tions for low-latency persistent storage, such as flash and
phase-change memory.

Heterogeneous hardware:Cloud performance can be
further improved by co-designing the hardware and the
software, deploying each cloud OS service on machines
especially suited for this service. While IaaS clouds were
limited to a few architectural choices for which their cus-
tomers could build VMs, when the cloud provider builds
both the hardware and the PaaS implementation, it can
make much larger deviations off the beaten path, and ex-

periment with different types of processors offering bet-
ter performance or using less energy, or with unusual
hardware configurations — with applications unaffected.

Examples abound in existing PaaS services, e.g.,
Rackspace’s Swift object store which runs on machines
with many local disks [15], and Amazon Glacier, a
write-once-read-rarely storage service working on spe-
cial hardware to lower maintenance costs of unread data.
We believe that much more research is required in this
area, on how to co-design optimal software and hardware
for different kinds of services.

Application execution: While IaaS started with heavy
machine-virtualization (long-running VMs complete
with their own operating systems), PaaS will continue
to develop lighter mechanisms for running application
code, based on new techniques of OS-level virtualiza-
tion and application-level virtualization. We also expect
to see research on ways of effectively and reliably uti-
lizing small short-lived processes on the cloud, such as
Google’s ideas of Push Queues and MapReduce.

We believe that most of the code to be run will likely
be written in high-level languages, not compiled code
for a specific processor, but because of the proliferation
of different languages, and the need to write common
code and libraries for all of them, we believe the future
lies with virtual machines similar to Microsoft’s Com-
mon Language Runtime [11], capable of running (and
mixing) code compiled from many different high-level
languages, or other approaches allowing mixing source
code from different languages.

Security and isolation: As mentioned above, the cloud
operating system must provide secure isolation between
different tenants or applications. While IaaS offers well-
understood security guarantees of hypervisors, we feel
that the security risks of PaaS services shared by different
tenants are much less understood and researched, and we
hope to see more research on models and techniques for
hardening PaaS services against data leaks and privilege
escalation attacks caused by software bugs.

5 Summary

We began this paper by making and justifying the claim
that PaaS is becoming the cloudoperating system, and
using it makes cloud applications easier to write, more
efficient and more scalable. Just like most traditional
software is written on an operating system, so will most
cloud applications be written over PaaS.

We continued to identify areas in which state-of-the-
art PaaS solutions still need to be improved in order to
better fulfill their new role of cloud operating system,
and made predictions on which directions PaaS research
and development will take over the next few years.
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