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Abstract

Virtual machines in the cloud typically run existing

general-purpose operating systems such as Linux. We

notice that the cloud’s hypervisor already provides some

features, such as isolation and hardware abstraction,

which are duplicated by traditional operating systems,

and that this duplication comes at a cost.

We present the design and implementation of OSv,

a new guest operating system designed specifically for

running a single application on a virtual machine in the

cloud. It addresses the duplication issues by using a low-

overhead library-OS-like design. It runs existing appli-

cations written for Linux, as well as new applications

written for OSv. We demonstrate that OSv is able to effi-

ciently run a variety of existing applications. We demon-

strate its sub-second boot time, small OS image and how

it makes more memory available to the application. For

unmodified network-intensive applications, we demon-

strate up to 25% increase in throughput and 47% de-

crease in latency. By using non-POSIX network APIs,

we can further improve performance and demonstrate a

290% increase in Memcached throughput.

1 Introduction

Cloud computing (Infrastructure-as-a-Service, or IaaS)

was born out of the realization that virtualization makes

it easy and safe for different organizations to share one

pool of physical machines. At any time, each organi-

zation can rent only as many virtual machines as it cur-

rently needs to run its application.

Today, virtual machines on the cloud typically run the

same traditional operating systems that were used on

physical machines, e.g., Linux, Windows, and *BSD.

But as the IaaS cloud becomes ubiquitous, this choice is

starting to make less sense: The features that made these

operating systems desirable on physical machines, such

as familiar single-machine administration interfaces and
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Figure 1: Software layers in a typical cloud VM.

support for a large selection of hardware, are losing their

relevance. At the same time, different features are be-

coming important: The VM’s operating system needs to

be fast, small, and easy to administer at large scale.

Moreover, fundamental features of traditional operat-

ing systems are becoming overhead, as they are now du-

plicated by other layers of the cloud stack (illustrated in

Figure 1).

For example, an important role of traditional operat-

ing systems is to isolate different processes from one an-

other, and all of them from the kernel. This isolation

comes at a cost, in performance of system calls and con-

text switches, and in complexity of the OS. This was

necessary when different users and applications ran on

the same OS, but on the cloud, the hypervisor provides

isolation between different VMs so mutually-untrusting

applications do not need to run on the same VM. In-

deed, the scale-out nature of cloud applications already

resulted in a trend of focused single-application VMs.

A second example of duplication is hardware abstrac-

tion: An OS normally provides an abstraction layer

through which the application accesses the hardware.

But on the cloud, this “hardware” is itself a virtualized

abstraction created by the hypervisor. Again, this dupli-

cation comes at a performance cost.



This paper explores the question of what an operating

system would look like if we designed it today with the

sole purpose of running on virtual machines on the cloud,

and not on physical machines.

We present OSv, a new OS we designed specifically

for cloud VMs. The main goals of OSv are as follows:

• Run existing cloud applications (Linux executa-

bles).

• Run these applications faster than Linux does.

• Make the image small enough, and the boot quick

enough, that starting a new VM becomes a viable

alternative to reconfiguring a running one.

• Explore new APIs for new applications written for

OSv, that provide even better performance.

• Explore using such new APIs in common runtime

environments, such as the Java Virtual Machine

(JVM). This will boost the performance of unmodi-

fied Java applications running on OSv.

• Be a platform for continued research on VM oper-

ating systems. OSv is actively developed as open

source, it is written in a modern language (C++11),

its codebase is relatively small, and our community

encourages experimentation and innovation.

OSv supports different hypervisors and processors,

with only minimal amount of architecture-specific code.

For 64-bit x86 processors, it currently runs on the KVM,

Xen, VMware and VirtualBox hypervisors, and also on

the Amazon EC2 and Google GCE clouds (which use

a variant of Xen and KVM, respectively). Preliminary

support for 64-bit ARM processors is also available.

In Section 2, we present the design and implementa-

tion of OSv. We will show that OSv runs only on a hyper-

visor, and is well-tuned for this (e.g., by avoiding spin-

locks). OSv runs a single application, with the kernel

and multiple threads all sharing a single address space.

This makes system calls as efficient as function calls,

and context switches quicker. OSv supports SMP VMs,

and has a redesigned network stack (network channels)

to lower socket API overheads. OSv includes other facil-

ities one expects in an operating system, such as standard

libraries, memory management and a thread scheduler,

and we will briefly survey those. OSv’s scheduler incor-

porates several new ideas including lock-free algorithms

and floating-point based fair accounting of run-time.

In Section 3, we begin to explore what kind of new

APIs a single-application OS like OSv might have be-

yond the traditional POSIX APIs to further improve per-

formance. We suggest two techniques to improve JVM

memory utilization and garbage-collection performance,

which boost performance of all JVM languages (Java,

Scala, Jruby, etc.) on OSv. We then demonstrate that a

zero-copy, lock-free API for packet processing can result

in a 4x increase of Memcached throughput.

In Section 4, we evaluate our implementation, and

compare OSv to Linux on several micro- and macro-

benchmarks. We show minor speedups over Linux in

computation- and memory-intensive workloads such as

the SPECjvm2008 benchmark, and up to 25% increase

in throughput and 47% reduction in latency in network-

dominated workloads such as Netperf and Memcached.

2 Design and Implementation of OSv

OSv follows the library OS design, an OS construct pio-

neered by exokernels in the 1990s [5]. In OSv’s case, the

hypervisor takes on the role of the exokernel, and VMs

the role of the applications: Each VM is a single applica-

tion with its own copy of the library OS (OSv). Library

OS design attempts to address performance and function-

ality limitations in applications that are caused by tradi-

tional OS abstractions. It moves resource management

to the application level, exports hardware directly to the

application via safe APIs, and reduces abstraction and

protection layers.

OSv runs a single application in the VM. If several

mutually-untrusting applications are to be run, they can

be run in separate VMs. Our assumption of a single ap-

plication per VM simplifies OSv, but more importantly,

eliminates the redundant and costly isolation inside a

guest, leaving the hypervisor to do isolation. Conse-

quently, OSv uses a single address space — all threads

and the kernel use the same page tables, reducing the

cost of context switches between applications threads or

between an application thread and the kernel.

The OSv kernel includes an ELF dynamic linker which

runs the desired application. This linker accepts stan-

dard ELF dynamically-linked code compiled for Linux.

When this code calls functions from the Linux ABI (i.e.,

functions provided on Linux by the glibc library), these

calls are resolved by the dynamic linker to functions im-

plemented by the OSv kernel. Even functions which

are considered “system calls” on Linux, e.g., read(),

in OSv are ordinary function calls and do not incur spe-

cial call overheads, nor do they incur the cost of user-

to-kernel parameter copying which is unnecessary in our

single-application OS.

Aiming at compatibility with a wide range of exist-

ing applications, OSv emulates a big part of the Linux

programming interface. Some functions like fork()

and exec() are not provided, since they don’t have any

meaning in the one-application model employed by OSv.

The core of OSv is new code, written in C++11. This

includes OSv’s loader and dynamic linker, memory man-

agement, thread scheduler and synchronization mecha-
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nisms such as mutex and RCU, virtual-hardware drivers,

and more. We will discuss below some of these mecha-

nisms in more detail.

Operating systems designed for physical machines

usually devote much of their code to supporting diverse

hardware. The situation is much easier for an operat-

ing system designed for VMs, such as OSv, because hy-

pervisors export a simplified and more stable hardware

view. OSv has drivers for a small set of traditional PC

devices commonly emulated by hypervisors, such as a

keyboard, VGA, serial port, SATA, IDE and HPET. Ad-

ditionally, it supports several paravirtual drivers for im-

proved performance: A paravirtual clock is supported on

KVM and Xen, a paravirtual NIC using virtio [25] and

VMXNET3 [29], and a paravirtual block device (disk)

using virtio and pvscsi.

For its filesystem support, OSv follows a traditional

UNIX-like VFS (virtual filesystem) design [12] and

adopts ZFS as its major filesystem. ZFS is a modern

filesystem emphasizing data integrity and advanced fea-

tures such as snapshots and volume management. It

employs a modified version of the Adaptative Replace-

ment Cache [18] for page cache management and conse-

quently it can achieve a good balance between recency

and frequency hits.

Other filesystems are also present in OSv. There is one

in-memory filesystem for specialized applications that

may want to boot without disk (ramfs), and a very simple

device filesystem for device views (devfs). For compati-

bility with Linux applications, a simplified procfs is also

supported.

Some components of OSv were not designed from

scratch, but rather imported from other open-source

projects. We took the C library headers and some func-

tions (such as stdio and math functions) from the musl

libc project, the VFS layer from Prex project, the ZFS

filesystem from FreeBSD, and and the ACPI drivers from

the ACPICA project. All of these are areas in which

OSv’s core value is not expected to be readily appar-

ent so it would make less sense for these to be written

from scratch, and we were able to save significant time

by reusing existing implementations.

OSv’s network stack was also initially imported from

FreeBSD, because it was easier to start with an imple-

mentation known to be correct, and later optimize it. As

we explain in Section 2.3, after the initial import we

rewrote the network stack extensively to use a more effi-

cient network channels-based design.

It is beyond the scope of this article to cover every

detail of OSv’s implementation. Therefore, the remain-

der of this section will explore a number of particu-

larly interesting or unique features of OSv’s implemen-

tation, including: 1. memory management in OSv, 2.

how and why OSv completely avoids spinlocks, 3. net-

work channels, a non-traditional design for the network-

ing stack, and 4. the OSv thread scheduler, which incor-

porates several new ideas including lock-free algorithms

and floating-point based fair accounting of run-time.

2.1 Memory Management

In theory, a library OS could dictate a flat physical mem-

ory mapping. However, OSv uses virtual memory like

general purpose OSs. There are two main reasons for

this. First, the x86 64 architecture mandates virtual

memory usage for long mode operation. Second, mod-

ern applications following traditional POSIX-like APIs

tend to map and unmap memory and use page protection

themselves.

OSv supports demand paging and memory mapping

via the mmap API. This is important, for example, for

a class of JVM-based applications that bypass the JVM

and use mmap directly through JNI. Such applications

include Apache Cassandra which is a popular NoSQL

database running on the JVM.

For large enough mappings, OSv will fill the map-

ping with huge pages (2MB in size for the x86 64 ar-

chitecture). The use of larger page sizes improve perfor-

mance of applications by reducing the number of TLB

misses. [24].

Since mappings can be partially unmapped, it is pos-

sible that one of these pages needs to be broken into

smaller pages. By employing a mechanism similar to

Linux’s Transparent Huge Pages, OSv handles this case

transparently.

As an OS that aims to support a single application,

page eviction is not supported. Additional specialized

memory management constructs are described in Sec-

tion 3.

2.2 No Spinlocks

One of the primitives used by contemporary OSs on SMP

machines is the spin-lock [2]. On a single-processor sys-

tem, it is easy to protect a data structure from concur-

rent access by several contexts by disabling interrupts

or context switches while performing non-atomic mod-

ifications. That is not enough on multi-processor sys-

tems, where code running on multiple CPUs may touch

the data concurrently. Virtually all modern SMP OSs

today use spin-locks: One CPU acquires the lock with

an atomic test-and-set operation, and the others exe-

cute a busy-loop until they can acquire the lock them-

selves. SMP OSs use this spin-lock primitive to imple-

ment higher-level locking facilities such as sleeping mu-

texes, and also use spin-locks directly in situations where

sleeping is forbidden, such as in the scheduler itself and

in interrupt-handling context.
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Spin-locks are well-suited to a wide range of SMP

physical hardware. However when we consider virtual

machines, spin-locks suffer from a significant drawback

known as the “lock-holder preemption” problem [28]:

while physical CPUs are always running if the OS wants

them to, virtual CPUs may “pause” at unknown times for

unknown durations. This can happen during exits to the

hypervisor or because the hypervisor decides to run other

guests or even hypervisor processes on this CPU.

If a virtual CPU is paused while holding a spin-lock,

other CPUs that want the same lock spin needlessly,

wasting CPU time. When a mutex is implemented using

a spin-lock, this means that a thread waiting on a lock can

find itself spinning and wasting CPU time, instead of im-

mediately going to sleep and letting another thread run.

The consequence of the lock-holder preemption problem

is lower performance — Friebel et al. have shown that

multitasking two guests on the same CPU results in per-

formance drops from 7% up to 99% in extreme cases [7].

Several approaches have been proposed to mitigate the

lock-holder preemption problem [7], usually requiring

changes to the hypervisor or some form of cooperation

between the hypervisor and the guest. However, in a

kernel designed especially to run in a virtual machine,

a better solution is to avoid the problem completely. OSv

does not use spin-locks at all, without giving up on lock-

based algorithms in the kernel or restricting it to single-

processor environments.

One way to eliminate spin-locks is to use lock-free al-

gorithms [19]. These algorithms make clever use of var-

ious atomic instructions provided by the SMP machine

(e.g., compare-exchange, fetch-and-add) to ensure that

a data structure remains in consistent state despite con-

current modifications. We can also avoid locks by using

other techniques such as Read-Copy-Update (RCU) [17].

But lock-free algorithms are very hard to develop, and it

is difficult to completely avoid locking in the kernel [16],

especially considering that we wanted to re-use existing

kernel components such as ZFS and the BSD network

stack. Therefore, our approach is as follows:

1. Ensure that most work in the kernel, including in-

terrupt handling, is done in threads. These can use

lock-based algorithms: They use a mutex (which

can put a thread to sleep), not a spin-lock.

2. Implement the mutex itself without using a spin-

lock, i.e., it is a lock-free algorithm.

3. The scheduler itself cannot be run in a thread, so

to protect its data structures without spin-locks, we

use per-cpu run queues and lock-free algorithms.

OSv executes almost everything in ordinary threads.

Interrupt handlers usually do nothing but wake up a

thread which will service the interrupting device. Ker-

nel code runs in threads just like application code, and

can sleep or be preempted just the same. OSv’s emphasis

on cheap thread context switches ensures that the perfor-

mance of this design does not suffer.

Our mutex implementation is based on a lock-free de-

sign by Gidenstam & Papatriantafilou [8], which protects

the mutex’s internal data structures with atomic opera-

tions in a lock-free fashion. With our lock-free mutex, a

paused CPU cannot cause other CPUs to start spinning.

As a result, kernel and application code which uses this

mutex are free from the lock-holder preemption problem.

Finally, the scheduler itself uses per-CPU run queues,

so that most scheduling decisions are local to the CPU

and need no locking. It uses lock-free algorithms when

scheduling cooperation is needed across CPUs, such as

waking a thread that belongs to a different CPU. OSv’s

scheduler is described in more detail in Section 2.4.

2.3 Network Channels

An operating system designed for the cloud must, al-

most by definition, provide a high quality TCP/IP stack.

OSv does this by applying Van Jacobson’s net channel

ideas [10] to its networking stack.

We begin by observing that a typical network stack is

traversed in two different directions:

• Top-down: the send() and recv() system calls

start at the socket layer, convert user buffers to TCP

packets, attach IP headers to those TCP packets, and

finally egress via the network card driver,

• Bottom-up: incoming packets are received by the

network card driver, parsed by the IP layer, for-

warded to the TCP layer, and are then appended

to socket buffers; blocked send(), recv(), and

poll() system calls are then woken as necessary.

As illustrated in Figure 2a, both the interrupt con-

texts (hard- and soft- interrupt) and the application thread

context perform processing on all layers of the network

stack. The key issue is that code from both contexts ac-

cesses shared data structures, causing lock and cache-

line contention on heavily used connections.

In order to resolve this contention, under OSv al-

most all packet processing is performed in an applica-

tion thread. Upon packet receipt, a simple classifier asso-

ciates it with a channel, which is a single producer/single

consumer queue for transferring packets to the applica-

tion thread. Each channel corresponds to a single flow,

such as a TCP connection or a UDP path from an inter-

face to a socket.

As can be seen in Figure 2b, access to shared data

structures from multiple threads is completely eliminated

(save for the channel itself).
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Figure 2: Control flow and locking in (left to right): (a) a traditional networking stack, (b) OSv’s networking stack

prior to lock merging, and (c) OSv’s complete networking stack

In addition, since there is now just one thread access-

ing the data, locking can be considerably simplified, re-

ducing both run-time and maintenance overhead.

Switching to a net channel approach allows a signifi-

cant reduction in the number of locks required, leading

to the situation in Figure 2c:

• The socket receive buffer lock has been merged with

the socket send buffer lock; since both buffers are

now populated by the same thread (running either

the send() or recv() system calls), splitting that

lock is unnecessary,

• The interleave prevention lock (used to prevent con-

current writes from interleaving) has been elimi-

nated and replaced by a wait queue using the socket

lock for synchronization, and

• The TCP layer lock has been merged with the socket

layer lock; since TCP processing now always hap-

pens within the context of a socket call, it is already

protected by that lock.

We expect further simplifications and improvements

to the stack as it matures.

2.4 The Thread Scheduler

The guiding principles of OSv’s thread scheduler are that

it should be lock-free, preemptive, tick-less, fair, scalable

and efficient.

Lock-free As explained in Section 2.2, OSv’s sched-

uler should not use spin-locks and it obviously cannot

use a sleeping mutex.

The scheduler keeps a separate run queue on each

CPU, listing the runnable threads on the CPU. Sleep-

ing threads are not listed on any run queue. The sched-

uler runs on a CPU when the running thread asks for a

reschedule, or when a timer expiration forces preemp-

tion. At that point, the scheduler chooses the most appro-

priate thread to run next from the threads on this CPU’s

run-queue, according to its fairness criteria. Because

each CPU has its own separate run-queue, this part of

the scheduler needs no locking.

The separate run queues can obviously lead to a situa-

tion where one CPU’s queue has more runnable threads

than another CPU’s, hurting the scheduler’s overall fair-

ness. We solve this by running a load balancer thread

on each CPU. This thread wakes up once in a while (10

times a second), and checks if some other CPU’s run

queue is shorter than this CPU’s. If it is, it picks one

thread from this CPU’s run queue, and wakes it on the

remote CPU.

Waking a thread on a remote CPU requires a more

elaborate lock-free algorithm: For each of the N CPUs,

we keep N lock-free queues of incoming wakeups, for a

total of N2 queues. We also keep a bitmask of nonempty

queues for each CPU. When CPU s wants to wake a

thread on CPU d, it adds this thread to the queue (s,d),

atomically turns on bit s in CPU d’s bitmask and sends

an inter-processor interrupt (IPI) to CPU d. The inter-

rupt leads CPU d to perform a reschedule, which begins

by looking for incoming wakeups. The bitmask tells the

scheduler which of the incoming queues it needs to in-

spect.
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Preemptive OSv fully supports preemptive multi-

tasking: While threads can voluntarily cause a resched-

ule (by waiting, yielding, or waking up another thread),

one can also happen at any time, preempted by an inter-

rupt such as a timer or the wakeup IPI mentioned above.

All threads are preemptable and as with the rest of the

system, there is no difference between application and

kernel threads. A thread can temporarily avoid being

preempted by incrementing a per-thread preempt-disable

counter. This feature can be useful in a number of cases

including, for example, maintaining per-CPU variables

and RCU [17] locks. An interrupt while the running

thread has preemption disabled will not cause a resched-

ule, but when the thread finally re-enables preemption, a

reschedule will take place.

Tick-less Most classic kernels, and even many modern

kernels, employ a periodic timer interrupt, also known as

a tick. The tick causes a reschedule to happen periodi-

cally, for example, 100 times each second. Such kernels

often account the amount of time that each thread has

run in whole ticks, and use these counts to decide which

thread to schedule at each tick.

Ticks are convenient, but also have various disadvan-

tages. Most importantly, excessive timer interrupts waste

CPU time. This is especially true on on virtual machines

where interrupts are significantly slower than on physical

machines, as they involve exits to the hypervisor.

Because of the disadvantages of ticks, OSv imple-

ments a tickless design. Using a high resolution clock,

the scheduler accounts to each thread the exact time it

consumed, instead of approximating it with ticks. Some

timer interrupts are still used: Whenever the fair schedul-

ing algorithm decides to run one thread, it also calculates

when it will want to switch to the next thread, and sets

a timer for that period. The scheduler employs hystere-

sis to avoid switching too frequently between two busy

threads. With the default hysteresis setting of 2ms, two

busy threads with equal priority will alternate 4ms time

slices, and the scheduler will never cause more than 500

timer interrupts each second. This number will be much

lower when there aren’t several threads constantly com-

peting for CPU.

Fair On each reschedule, the scheduler must decide

which of the CPU’s runnable threads should run next,

and for how long. A fair scheduler should account for

the amount of run time that each thread got, and strive to

either equalize it or achieve a desired ratio if the threads

have different priorities. However, using the total run-

time of the threads will quickly lead to imbalances. For

instance, if a thread was out of the CPU for 10 seconds

and becomes runnable, it will monopolize the CPU for 10

whole seconds as the scheduler seeks to achieve fairness.

Instead, we want to equalize the amount of run-time that

runnable threads have gotten in recent history, and forget

about the distant past.

OSv’s scheduler calculates the exponentially-decaying

moving average of each thread’s recent run time. The

scheduler will choose to run next the runnable thread

with the lowest moving-average runtime, and calculate

exactly how much time this thread should be allowed

to run before its runtime surpasses that of the runner-up

thread.

Our moving-average runtime is a floating-point num-

ber. It is interesting to mention that while some kernels

forbid floating-point use inside the kernel, OSv fully al-

lows it. As a matter of fact, it has no choice but to al-

low floating point in the kernel due to the lack of a clear

boundary between the kernel and the application.

The biggest stumbling block to implementing moving-

average runtime as described above is its scalability: It

would be impractical to update the moving-average run-

times of all threads on each scheduler invocation.

But we can show that this is not actually necessary; we

can achieve the same goal with just updating the runtime

of the single running thread. It is beyond the scope of

this article to derive the formulas used in OSv’s scheduler

to maintain the moving-average runtime, or to calculate

how much time we should allow a thread to run until its

moving-average runtime overtakes that of the runner-up

thread.

Scalable OSv’s scheduler has O(lgN) complexity in

the number of runnable threads on each CPU: The run

queue is kept sorted by moving-average runtime, and as

explained, each reschedule updates the runtime of just

one thread. The scheduler is totally unaware of threads

which are not runnable (e.g., waiting for a timer or a

mutex), so there is no performance cost in having many

utility threads lying around and rarely running. OSv in-

deed has many of these utility threads, such as the load-

balancer and interrupt-handling threads.

Efficient Beyond the scheduler’s scalability, OSv em-

ploys additional techniques to make the scheduler and

context switches more efficient.

Some of these techniques include:

• OSv’s single address space means that we do not

need to switch page tables or flush the TLB on con-

text switches. This makes context switches sig-

nificantly cheaper than those on traditional multi-

process operating systems.

• Saving the floating-point unit (FPU) registers on ev-

ery context switch is also costly. We make use of

the fact that most reschedules are voluntary, caused
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by the running thread calling a function such as

mutex wait() or wake(). The x86 64 ABI guar-

antees that the FPU registers are caller-saved. So

for voluntary context switches, we can skip saving

the FPU state.

As explained above, waking a sleeping thread on a

different CPU requires an IPI. These are expensive, and

even more so on virtual machines, where both sending

and receiving interrupts cause exits to the hypervisor. As

an optimization, idle CPUs spend some time before halt-

ing in polling state, where they ask not to be sent these

IPIs, and instead poll the wakeup bitmask. This opti-

mization can almost eliminate the expensive IPIs in the

case where two threads on two CPUs wait for one an-

other in lockstep.

3 Beyond the Linux APIs

In this section, we explore what kind of new APIs a

single-application OS like OSv might have beyond the

standard Linux APIs, and discuss several such extensions

which we have already implemented as well as their ben-

efits.

The biggest obstacle to introducing new APIs is the

need to modify existing applications or write new appli-

cations. One good way around this problem is to focus

on efficiently running a runtime environment, such as the

Java Virtual Machine (JVM), on OSv. If we optimize

the JVM itself, any application run inside this JVM will

benefit from this optimization.

As explained in the previous section, OSv can run un-

modified Linux programs, which use the Linux APIs — a

superset of the POSIX APIs. We have lowered the over-

head of these APIs, as described in the previous section

and quantified in the next section. One of the assump-

tions we have made is that OSv runs a single application,

in a single address space. This allowed us to run “system

calls” as ordinary functions, reducing their overhead.

However, in this section we show that there remain

significant overheads and limitations inherent in the

Linux APIs, which were designed with a multi-process

multi-user operating system in mind. We propose to re-

duce these remaining overheads by designing new APIs

specifically for applications running on a single-process

OS like OSv.

The socket API, in particular, is rife with such over-

heads. For example, a socket read or write necessar-

ily copies the data, because on Linux the kernel cannot

share packet buffers with user space. But on a single-

address-space OS, a new zero-copy API can be devised

where the kernel and user space share the buffers. For

packet-processing applications, we can adopt a netmap-

like API [23]. The OSv kernel may even expose the

host’s virtio rings to the application (which is safe when

we have a single application), completely eliminating

one layer of abstraction. In Section 4 we demonstrate

a Memcached implementation which uses a non-POSIX

packet processing API to achieve a 4-fold increase of

throughput compared to the traditional Memcached us-

ing the POSIX socket APIs.

Another new API benefiting from the single-

application nature of OSv is one giving the application

direct access to the page table. Java’s GC performance,

in particular, could benefit: The Hotspot JVM uses a data

structure called a card table [22] to track write accesses

to references to objects. To update this card table to mark

memory containing that reference as dirty, the code gen-

erated by the JVM has to be followed by a “write bar-

rier”. This additional code causes both extra instructions

and cache line bounces. However, the MMU already

tracks write access to memory. By giving the JVM ac-

cess to the MMU, we can track reference modifications

without a separate card table or write barriers. A simi-

lar strategy is already employed by Azul C4 [27], but it

requires heavy modifications to the Linux memory man-

agement system.

In the rest of this section, we present two new non-

Linux features which we implemented in OSv. The first

feature is a shrinker API, which allows the application

and the kernel to share the entire available memory. The

second feature, the JVM balloon, applies the shrinker

idea to an unmodified Java Virtual Machine, so that in-

stead of manually chosing a heap size for the JVM, the

heap is automatically resized to fill all memory which the

kernel does not need.

3.1 Shrinker

The shrinker API allows the application or an OS com-

ponent to register callback functions that OSv will call

when the system is low on memory. The callback func-

tion is then responsible for freeing some of that appli-

cation or component’s memory. Under most operat-

ing systems, applications or components that maintain

a dynamic cache, such as a Memcached cache or VFS

page cache, must statically limit its size to a pre-defined

amount of memory or number of cache entries. This im-

poses sometimes contradicting challenges: not to con-

sume more memory than available in the system and

not to strangle other parts of the system, while still tak-

ing advantage of the available memory. This gets even

more challenging when there are a few heavy memory

consumers in the system that work in a bursty manner

wherein the memory needs to “flow” from one applica-

tion or component to another depending on demand. The

shrinker API provides an adaptable solution by allowing

applications and components to handle memory pressure
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as it arises, instead of requiring admininstrators to tune

in advance.

We have demonstrated the usefulness of the shrinker

API in two cases — Memcached [6], and the JVM. Or-

dinarily, Memcached requires the in-memory cache size

to be specified (with the “-m” option) and the JVM re-

quires the maximum heap size to be specified (the “-

Xmx” option). Setting these sizes manually usually re-

sults in wasted VM memory, as the user decreases the

cache or heap size to leave “enough” memory to the OS.

Our Memcached re-implementation described in Sec-

tion 4 uses the shrinker API and does not need the “-

m” option: it uses for its cache all the memory which

OSv doesn’t need. We can similarly modify the JVM to

use the shrinker to automatically size its heap, and even

achieve the same on an unmodified JVM, as we will ex-

plain now.

3.2 JVM Balloon

The JVM balloon is a mechanism we developed to auto-

matically determine the JVM heap size made available to

the application. Ballooning is a widely used mechanism

in hypervisors [30, 31] and the JVM balloon draws from

the same core idea: providing efficient dynamic memory

placement and reducing the need to do complex planning

in advance. OSv’s JVM balloon is designed to work with

an unmodified JVM. As a guest-side solution, it will also

work on all supported hypervisors.

It is possible to modify the JVM code to simplify

this process. But the decision to run it from the OS

side allows for enhanced flexibility, since it avoids the

need to modify the various extant versions and vendor-

implementations of the JVM.

The JVM allocates most of its memory from its heap.

This area can grow from its minimum size but is bounded

by a maximum size, both of which can be specified by

initialization parameters. The size of the JVM heap di-

rectly influences performance for applications since hav-

ing more memory available reduces occurrences of GC

cycles.

However, a heap size that is too big can also hurt the

application since the OS will be left without memory to

conduct its tasks — like buffering a large file — when

it needs to. Although any modern OS is capable of pag-

ing through the virtual-memory system, the OS usually

lacks information during this process to make the best

placement decision. A normal OS will see all heap areas

as pages whose contents cannot be semantically inter-

preted. Consequently, it is forced to evict such pages to

disk, which generates considerable disk activity and sub-

optimal cache growth. At this point an OS that is blind

to the semantic content of the pages will usually avoid

evicting too much since it cannot guarantee that those

pages will not be used in the future. This results in less

memory being devoted to the page cache, where it would

potentially bring the most benefit. We quantify this effect

in Section 4, and show that OSv’s JVM balloon allows

pages to be discarded without any disk activity.

OSv’s approach is to allocate almost all available

memory to the JVM when it is started 1, therefore set-

ting that memory as the de facto JVM maximum heap.

The OS allocations can proceed normally until pressure

criteria are met.

Upon pressure, OSv will use JNI [13] to create an ob-

ject in the JVM heap with a size big enough to allevi-

ate that pressure and acquire a reference to it. The ob-

ject chosen is a ByteArray, since these are laid down

contiguously in memory and it is possible to acquire a

pointer to their address from JNI.

This object is referenced from the JNI, so a GC will

not free it and at this point the heap size is effectively re-

duced by the size of the object, forcing the JVM to count

on a smaller heap for future allocations. Because the bal-

loon object still holds the actual pages as backing stor-

age, the last step of the ballooning process is to give the

pages back to the OS by unmapping that area. The JVM

cannot guarantee or force any kind of alignment for the

object, which means that in this process some memory

will be wasted: it will neither be used the Java applica-

tion nor given back to the OS. To mitigate this we use

reasonably large minimum balloon sizes (128MB).

Balloon movement

The reference to the object, held by OSv, guarantees that

the object will not be disposed by the JVM or taken into

account when making collection decisions. However, it

does not guarantee that the object is never touched again.

When the JVM undergoes a GC cycle, it moves the old

objects to new locations to open up space for new objects

to come. At this point, OSv encounters a page fault.

OSv assumes that nothing in the JVM directly uses

that object, and therefore is able to make the following

assumptions about page faults that hit the balloon object:

• all reads from it are part of a copy to a new location,

• the source and destination addresses correspond to

the same offset within the object,

• whenever that region is written to, it no longer holds

the balloon.

With that in mind, OSv’s page fault handler can decode

the copy instruction — usually a rep mov in x86 — and

find its destination operand. It then recreates the balloon

in the destination location and updates all register values

190% in the current implementation
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to make the copier believe the copy was successfully con-

ducted. OSv’s balloon mechanism is expected to work

with any JVM or collector in which these assumptions

hold.

The old location is kept unmapped until it is written to.

This has both the goal of allowing the remap to be lazy,

and to correctly support GCs that may speculatively copy

the object to more than one location. Such is the case,

for instance, for OpenJDK’s Parallel Scavenge Garbage

Collector.

4 Evaluation

We conducted some experiments to measure the perfor-

mance of OSv as a guest operating system, and demon-

strate improvement over a traditional OS: Linux. In all

runs below, for “Linux” we used a default installation

of Fedora 20 with the iptables firewall rules cleared.

We look at both micro-benchmarks measuring the perfor-

mance of one particular feature, and macro-benchmarks

measuring the overall performance of an application.

The host used in the benchmarks was a 4-CPU 3.4GHz

Intel R© Core
TM

i7-4770 CPU, 16GB of RAM, with an

SSD disk. The host was running Fedora 20 Linux and

the KVM hypervisor.

Macro Benchmarks

Memcached is a high-performance in-memory key-

value storage server [6]. It is used by many high-profile

Web sites to cache results of database queries and pre-

pared page sections, to significantly boost these sites’

performance. We used the Memaslap benchmark to load

the server and measure its performance. Memaslap runs

on a remote machine (connected to the tested host with

a direct 40 GbE cable), sends random requests (concur-

rency 120), 90% get and 10% set, to the server and

measures the request completion rate. In this test, we

measured a single-vCPU guest running Memcached with

one service thread. Memcached supports both UDP and

TCP protocols — we tested the UDP protocol which is

considered to have lower latency and overhead [20]. We

set the combination of Memcached’s cache size (5 GB)

and memaslap test length (30 seconds) to ensure that the

cache does not fill up during the test.

Table 1 presents the results of the memaslap bench-

mark, comparing the same unmodified Memcached pro-

gram running on OSv and Linux guests. We can see

that Memcached running on OSv achieves 22% higher

throughput than when running on Linux.

One of the stated goals of OSv was that an OSv guest

boots quickly, and has a small image size. Indeed, we

measured the time to boot OSv and Memcached, until

Guest OS Transactions / sec Score

Linux 104394 1

OSv 127275 1.22

Table 1: Memcached and Memaslap benchmark

Memcached starts serving requests, to be just 0.6 sec-

onds. The guest image size was just 11MB. We believe

that both numbers can be optimized further, e.g., by using

ramfs instead of ZFS (Memcached does not need persis-

tent storage).

In Section 3 we proposed to further improve perfor-

mance by implementing in OSv new networking APIs

with lower overheads than the POSIX socket APIs. To

test this direction, we re-implemented part of the Mem-

cached protocol (the parts that the memaslap benchmark

uses). We used a packet-filtering API to grab incoming

UDP frames, process them, and send responses in-place

from the packet-filter callback. As before, we ran this

application code in a single-vCPU guest running OSv

and measured it with memaslap. The result was 406750

transactions/sec — 3.9 times the throughput of the base-

line Memcached server on Linux.

SPECjvm2008 is a Java benchmark suite containing a

variety of real-life applications and benchmarks. It fo-

cuses on the performance of the JVM executing a single

application, and reflects the performance of CPU- and

memory-intensive workloads, having low dependence on

file I/O and including no network I/O across machines.

SPECjvm2008 is not only a performance benchmark,

it is also a good correctness test for OSv. The bench-

marks in the suite use numerous OS features, and each

benchmark validates the correctness of its computation.

Table 2 shows the scores for both OSv and Linux for

the SPECjvm2008 benchmarks. For both guest OSs, the

guest is given 2GB of memory and two vCPUs, and the

benchmark is configured to use two threads. The JVM’s

heap size is set to 1400MB.

Benchmark OSv Linux Benchmark OSv Linux

Weighted average 1.046 1.041 sor.large 27.3 27.1

compiler.compiler 377 393 sparse.large 27.7 27.2

compiler.sunflow 140 149 fft.small 138 114

compress 111 109 lu.small 216 249

crypto.aes 57 56 sor.small 122 121

crypto.rsa 289 279 sparse.small 159 163

crypto.signverify 280 275 monte-carlo 159 150

derby 176 181 serial 107 107

mpegaudio 100 100 sunflow 56.6 55.4

fft.large 35.5 32.8 xml.transform 251 247

lu.large 12.2 12.2 xml.validation 480 485

Table 2: SPECjvm2008 — higher is better

We did not expect a big improvement, considering

that SPECjvm2008 is computation-dominated with rel-

atively little use of OS services. Indeed, on average, the

SPECjvm2008 benchmarks did only 0.5% better on OSv
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than on Linux. This is a small but statistically-significant

improvement (the standard deviation of the weighted av-

erage was only 0.2%). OSv did slightly worse than

Linux on some benchmarks (notably those relying on

the filesystem) and slightly better on others. We believe

that with further optimizations to OSv we can continue

to improve its score, especially on the lagging bench-

marks, but the difference will always remain small in

these computation-dominated benchmarks.

Micro Benchmarks

Network performance: We measured the network

stack’s performance using the Netperf benchmark [11]

running on the host. Tables 3 and 4 shows the results

for TCP and UDP tests respectively. We can see that

OSv consistently outperforms Linux in the tests. RR

(request/response) is significantly better for both TCP

and UDP, translating to 37%-47% reduction in latency.

TCP STREAM (single-stream throughput) is 24%-25%

higher for OSv.

Test STREAM (Mbps) RR (Tps)

Linux UP 44546±941 45976±299

Linux SMP 40149±1044 45092±1101

OSv UP 55466±553 74862±405

OSv SMP 49611±1442 72461±572

Table 3: Netperf TCP benchmarks: higher is better

Test RR (Tps)

Linux UP 44173±345

Linux SMP 47170±2160

OSv UP 82701±799

OSv SMP 74367±1246

Table 4: Netperf UDP benchmarks: higher is better

JVM balloon: To isolate the effects of the JVM balloon

technique described in Section 3.2, we wrote a simple

microbenchmark in Java to be run on both Linux and

OSv. It consists of the following steps:

1. Allocate 3.5 GB of memory in 2MB increments and

store them in a list,

2. Remove from the list and write each 2MB buffer to

a file sequentially until all buffers are exhausted,

3. Finally read that file back to memory.

In both guest OSs, the application ran alone in a VM

with 4GB of RAM. For OSv, the JVM heap size was au-

tomatically calculated by the balloon mechanism to 3.6

GB. For Linux, the same value was manually set.

As shown in Table 5, OSv fared better in this test than

Linux by around 35%. After the first round of alloca-

tions the guest memory is almost depleted. As Linux

needs more memory to back the file it has no option but

to evict JVM heap pages. That generates considerable

disk activity, that not only is detrimental per se, but will

in this particular moment compete with the application

disk writes.

We observe that not only is the execution slower on

Linux, it also has a much higher standard deviation. This

is consistent with our expectation. Aside from deviations

arising from the I/O operations themselves, the Linux

VM lacks information to make the right decision about

which pages is best to evict.

Guest OS Total (sec) File Write (sec) File Read (sec)

Linux 40±6 27±6 10.5±0.2

OSv 26±1 16±1 7.4±0.2

Table 5: JVM balloon micro-benchmark: lower is better

OSv can be more agressive when discarding pages be-

cause it doesn’t have to evict pages to make room for

the page cache, while Linux will be a lot more conserva-

tive in order to avoid swap I/O. That also speeds up step

3 (”File Read”), as can be seen in Table 5. In the ab-

sence of eviction patterns, both Linux and OSv achieve

consistent results with a low deviation. However, Linux

reaches this phase with a smaller page cache to avoid

generating excessive disk activity. OSv does not need to

make such compromise, leading to a 30% performance

improvement in that phase alone.

Context switches: We wrote a context-switch micro-

benchmark to quantify the claims made earlier that

thread switching is significantly cheaper on OSv than it

is on Linux. The benchmark has two threads, which al-

ternate waking each other with a pthreads condition vari-

able. We then measure the average amount of time that

each such wake iteration took.

The benchmark is further subdivided into two cases:

In the “colocated” case, the two alternating threads are

colocated on the same processor, simulating the classic

uniprocessor context switch. In the “apart” case, the two

threads are pinned to different processors.

Guest OS Colocated Apart

Linux 905 ns 13148 ns

OSv 328 ns 1402 ns

Table 6: Context switch benchmark

The results are presented in Table 6. It shows that

thread switching is indeed much faster in OSv than in

Linux — between 3 and 10 times faster. The “apart”

case is especially helped in OSv by the last optimization

described in 2.4, of idle-time polling.
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5 Related Work

Containers [26, 3] use a completely different approach

to eliminate the feature duplication of the hypervisor and

guest OS. They abandon the idea of a hypervisor, and

instead provide OS-level virtualization — modifying the

host OS to support isolated execution environments for

applications while sharing the same kernel. This ap-

proach improves resource sharing between guests and

lowers per-guest overhead. Nevertheless, the majority of

IaaS clouds today use hypervisors. These offer tenants

better-understood isolation and security guarantees, and

the freedom to choose their own kernel.

Picoprocesses [4] are another contender to replace the

hypervisor. While a containers’ host exposes to its guests

the entire host kernel’s ABI, picoprocesses offer only

a bare-minimum API providing basic features like allo-

cating memory, creating a thread and sending a packet.

On top of this minimal API, a library OS is used to al-

low running executables written for Linux [9] or Win-

dows [21]. These library OSs are similar to OSv in

that they take a minimal host/guest interface and use it

to implement a full traditional-OS ABI for a single ap-

plication, but the implementation is completely differ-

ent. For example, the picoprocess POSIX layer uses the

host’s threads, while OSv needs to implement threads

and schedule these threads on its own.

If we return our attention to hypervisors, one known

approach to reducing the overheads of the guest OS is to

take an existing operating system, such as a Linux dis-

tribution, and trim it down as much as possible. Two

examples of this approach are CoreOS and Tiny Core

Linux. OSv differs from these OSs in that it is a newly

designed OS, not a derivative of Linux. This allowed

OSv to make different design decisions than Linux made,

e.g., our choice not to use spinlocks, or to have a single

address space despite having an MMU.

While OSv can run applications written in almost any

language (both compiled and high-level), some VM OSs

focus on running only a single high-level language. For

example, Erlang on Xen runs an Erlang VM directly on

the Xen hypervisor. Mirage OS [14] is a library OS writ-

ten in OCaml that runs on the Xen hypervisor. It takes

the idea of a library OS to the extreme where an appli-

cation links against separate OS service libraries and un-

used services are eliminated from the final image by the

compiler. For example, a DNS server VM image can be

as small as 200 KB.

Libra [1] is a library OS for running IBM’s J9 JVM

in a VM. Libra makes the case that as JVM already has

sandboxing, a memory model, and a threading model, a

general purpose OS is redundant. However, Libra does

not replace the whole OS but instead relies on Linux

running in a separate hypervisor partition to provide net-

working and filesystem.

ClickOS [15] is an optimized operating system for

VMs specializing in network processing applications

such as routing, and achieves impressive raw packet-per-

second figures. However, unlike OSv which runs on mul-

tiple hypervisors, ClickOS can only run on Xen, and re-

quires extensive modifications to Xen itself. Addition-

ally, ClickOS is missing important functionality that OSv

has, such as support for SMP guests and a TCP stack.

6 Conclusions and Future Work

We have shown that OSv is, in many respects, a more

suitable operating system for virtual machines in the

cloud than are traditional operating systems such as

Linux. OSv outperforms Linux in many benchmarks, it

makes for small images, and its boot time is barely no-

ticeable. OSv is a young project, and we believe that with

continued work we can further improve its performance.

While OSv improves the performance of existing ap-

plications, some of the most dramatic improvements

we’ve seen came from adding non-POSIX API to OSv.

For example, the shrinker API allows an OSv-aware ap-

plication to make better use of available memory, and a

packet-filtering APIs reduces the overheads of the stan-

dard socket APIs. We plan to continue to explore new

interfaces to add to OSv to further improve application

performance. Areas of exploration will include network

APIs and cooperative scheduling.

Instead of modifying many individual applications, a

promising future direction is to modify a runtime envi-

ronment, such as the JVM, on which many applications

run. This will allow us to run unmodified applications,

while still benefiting from new OSv APIs. The JVM bal-

loon we presented is an example of this direction.

Finally, we hope that the availability of OSv, with its

small modern code and broad usability (not limited to

specific languages, hypervisors or applications) will en-

courage more research on operating systems for VMs.
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