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ABSTRACT
Given a user’s free-text query, search engines return a ranked
list of documents that are likely to be helpful to the user.
In this research, we propose a simple yet highly effective
technique for also providing a ranked list of related people
to every search. The list of people related to the query is
calculated at search time using an enhanced faceted search
engine, based on person-document relationships mined from
several Web 2.0 applications (such as blogs and social book-
marks) in the intranet of a large enterprise.

Our hypothesis is that the related people we retrieve for
a query are people who have special interest in the query’s
topic, and thus may be useful to the person making this
query. We conducted a large user study with over 600 people
to confirm this hypothesis.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
Social Search, Faceted Search, Enterprise Search

1. INTRODUCTION
When they are in need of information, some people like

to find a written document which explains what they want
to know. Yet, other people prefer to find the right person
— one who might know the answer to their question — and
ask him or her for the specific information they need. Most
people are somewhere between these extremes, preferring to
find documents in some cases, and people to ask in other
cases. Also, for some topics, only one of these information
sources is available. This is why we believe that search en-
gines should provide both types of results: Given a query,
the search engine should provide both a ranked list of docu-
ments that might answer the user’s query, and a ranked list
of people that are interested in the query’s topic, and might
be able to help.
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Often the data and techniques used to find relevant doc-
uments, and those used to find relevant people (as in expert
search), were separate and unrelated. In this paper, we pro-
pose a unified method that finds both relevant documents
and relevant people for every query.

As we shall see in section 2 below, the key to our technique
is knowing for each document which person is related to
it. An excellent source for both documents and document-
person relationships are so-called Web 2.0 applications, such
as blogs and social bookmarking systems. In addition to
the actual documents, these applications can tell us who is
related to each document, and in what way. For example, a
person can be related to a blog entry as its author or as a
commenter, and can be related to any page as a bookmarker.

We will then show how to use this social information —
documents and document-person relationships — to deter-
mine which people are most relevant to a given query. We
will use an enhanced faceted search engine to determine the
(potentially large) set of relevant documents for this query,
and then which people are most related to these documents.

In this work, we focused our attention on the case of en-
terprise search, i.e., search in the intranet of a large organi-
zation. Compared to the open Internet, people in the enter-
prise are easier to track (because they use the same user-id
everywhere), and are more likely to be helpful to each other.

In section 3, we evaluate the validity of the “related peo-
ple” results. The individual document-person relationships
(author, commenter, bookmarker) indicate that the person
is in some way relevant to the content of the document; So it
is natural to hypothesize that the query-person relationship
we derive from them also measures the person’s relevance to
the topic of the query. We checked this hypothesis using a
large user study with over 600 participants.

2. THE SYSTEM

2.1 Social Information
Traditionally, building a Web site took a considerable

amount of effort and expertise, so most users were relegated
to the role of information consumers, not producers. Web
2.0 services, such as forums, wikis, collaborative bookmark-
ing services, and many more, allow ordinary users to become
information producers. In turn, this allows people to learn
from the experiences and knowledge of their peers — some-
thing which is especially important in the intranet of a large
international enterprise.

Web 2.0 sources not only provide a new wealth of infor-



mation, they also provide new types of information, which
we call social information. The new types of information
include user-supplied metadata for documents (bookmarks,
tags, ratings, comments), relationships between people and
documents (who wrote a document, who commented on it,
who tagged it, and so on), and other relationships such as
between people and people, or between documents and tags.

The goal of a social search engine is to use the social infor-
mation to improve the user’s search experience over regular
full-text search. One way of improving search is to improve
the relevance of document results [3, 16, 6]: Tags (and other
forms of comments) supply more text that can be considered
during search, and important documents can be recognized
by the amount of user activity around them (such as the
number of times they were bookmarked or commented on).

But using the social information, we want to do more than
just return better documents. The literature [5, 17, 10, 13,
15, 14] proposes the idea of multi-entity search, where other
entities besides documents can be used in queries or turn
up in search results. In our case, we want people to be
searchable entities in our system, exactly like documents:
Related people will be returned for every query (in addition
to the relevant documents), and people can also be used as
query terms.

2.2 Related People
In the standard vector space model of IR, each document

is represented as a normalized vector that measures the rel-
evance of each term (word) to the document. The entire
document collection is therefore represented as a relevance
matrix D between documents and terms; Dij is the relevance
of the ith document to the jth term. A query is represented,
just like a document, as a vector q. The product Dq is a
vector giving the relevance of each document to the query
q. I.e., these are the search results.

The people-document relationships in the social informa-
tion allow us to define a second relevance matrix P , between
documents and people. Pij measures the relevance of the ith

document to the jth person. We might, for example, want
to give a high relevance Pij when person j wrote document
i, a lower relevance if they commented it, and a lower still
relevance if they merely bookmarked it.

Multiplying the term-document relevance matrix and the
document-person relevance matrix yields a term-person rele-
vance matrix PTD that can be then be used in search: PTD
can be, just like D, multiplied by a query vector, resulting
this time in relevant people (instead of documents). The
relevance of these people to the query is indirect, through
the documents — a person is relevant to a query if he or she
are relevant to documents which are relevant to the query.

The need to calculate the matrix product PTD causes
problems, though. Every change to the social information
can require modifying large parts of this matrix, making it
difficult to index dynamically-changing data. It also means
that searching for relevant documents and relevant people
is done separately, using two different relevance matrices
(D and PTD). Finally, most search engines offer capabili-
ties beyond the simple vector space model (e.g., supporting
searches of multi-word phrases, considering term proximity,
and more), and using the matrix PTD directly forces us to
give up on these features.

We therefore propose an alternative technique which (as
we shall show) gives equivalent results, but solves all the

above problems. The idea, already found in [2, 11], is to
first use the given search engine to find the relevant docu-
ments; Then, knowing which people are relevant to each of
these documents, we start aggregating the relevance of each
person. This process can be realized using faceted search,
with the related people added as a facet to each document:

2.3 Faceted Search for Related People
Faceted search is a commonly-used technique for adding

navigation to a search engine. A facet is a single attribute
of the document, e.g., in a book search application there
might be an “Author” facet and a “Price” facet, and in our
application there is a “Related Person” facet. Faceted search
starts, like ordinary search, by finding all documents match-
ing the user’s query. But while an ordinary search system
will only show the few documents with the highest relevance,
a faceted search system goes over all matching documents,
counting the number of documents found for each subcate-
gory of the facet (individual authors, price ranges, etc.), and
finally displays the categories with the highest counts.

Our unified search solution is based on a faceted search
library [4] developed upon the open-source Java search en-
gine, Lucene [1]. This library has several simple but useful
extensions to the faceted search paradigm, which we shall
use. For the purpose of this work, the two most important
extensions are these:

• Instead of just counting the number of documents for
each category, the library can aggregate other numeric
expressions. E.g., the sum of these documents’ rele-
vance score to the query.

• The relation between a category and a document is not
just binary (it is either attached to the document, or
not) — it can be assigned a weight.

These capabilities are exactly what we need to produce
related-people scores which are identical to the scores that
the matrix approach described above would have produced:
As explained above, given a query vector q, (PTD)q is a vec-
tor specifying for each person, his or her (indirect) relevance
to the query. Let’s rewrite this multiplication as PT(Dq).
But Dq is nothing more than the vector of matching doc-
uments, specifying the relevance score of each document to
the query. Looking at position i of this vector equality, we
therefore discover that the indirect relevance of person i to
the query (according to the matrix method) is identical to“

(PTD)q
”

i
=

“
PT(Dq)

”
i

=

ndocX
j=1

(PT)ij(Dq)j

=

ndocX
j=1

Pji · scoreq(document j)

If we remember that the relevance score is non-zero only
for matching documents, and that Pji is the known relation
strength between document j and person i, we end up with
the formula (as proposed in [2] with different justification):

=
X

matching
documents d

relation(d, person i) · scoreq(d)



The extended faceted search indeed allows aggregating
this sum for each person i (i.e., each category of the related
people facet). relation(d, person i) is available as the weight
of the person-i category on document d, and scoreq(d) is
available for each document because the facet aggregation
starts after the document relevance scores have already been
calculated.

The faceted search library of [4] contains two further ex-
tensions which are useful for our social search application:

The library allows associating with each category (in our
case, person) a query-independent static score (or category
boost). The final score of each category (person) is deter-
mined by multiplying its query dependent score with its
static score. The static score of each person can be defined
according to their relative popularity or authority, e.g., us-
ing the FolkRank score [7]. In our implementation, we chose
to use inverse entity frequency (ief) [17]. It is defined as

ief(person) = log(
N

Nperson
)

where N stands for the number of all documents in the sys-
tem and Nperson stands for the number of documents related
to this person. Analogous to the idf score for terms, the ief
score “punishes” categories that are related to many docu-
ments in general, hence are less specific to a given query.

The last faceted-search extension of interest is using the
category weights to score the documents when searching for
all documents in a certain category. In our social search ap-
plication, this means that the top results for “All documents
related to person P” will be documents which the person
wrote, rather than merely commented on or bookmarked.

We’ve already seen that documents and people have an
equal standing in our system when it comes to the search
results (results of both types are returned for each query).
The same is true for queries: in addition to textual queries,
we can search by person (as explained in the previous para-
graph), or use a combination of text and people as a query.

2.4 The Social Search Application
In the following we describe our social search implemen-

tation, based on social information gathered from IBM’s in-
tranet. From the internal Web 2.0 services in IBM, we chose
the currently most used ones: Dogear [12], a collaborative
bookmarking service used to bookmark and tag pages both
within and outside the intranet; and BlogCentral [8], a blog
service allowing all IBM employees to manage blogs within
the intranet. We also used the enterprise directory appli-
cation, called BluePages, to collect information about the
IBMers who participated in Dogear or BlogCentral. At the
time of writing, 15,779 employees assigned 337,345 book-
marks to 214,633 Web-pages, and wrote 67,564 blog threads.

The content we indexed for a Web page contained its title
and the users’ descriptions and tags as provided by Dogear
(the actual content of the page was not crawled and there-
fore not available). For blogs, the indexed document was a
blog thread, containing the blog entry, comments, and tags.
For each person, we had a document containing the person’s
directory information (such as name, title, and group). Fi-
nally, people were connected, as facets, to the pages they
bookmarked, and to their blog entries (as an author or as a
commenter). Tags are connected to their related documents.

A static-score (or boost, in Lucene nomenclature) was given
to each document based on the amount of activity around

Figure 1: The social search application

it. In essence, a page which was bookmarked by many peo-
ple, or a blog entry that was heavily commented or rated, is
more likely to be a good search result than a document in
which hardly anyone expressed interest. The actual boost
used was log(X + 2), where X is the number of bookmarks,
ratings and comments on that document. Our evaluation
showed that this boosting significantly increased the docu-
ment search precision.

The social search Web application, codenamed Cow Search,
was made available to all users of IBM’s intranet. Fig-
ure 1 shows a screenshot of the application, given the query
“openID”. On the left (marked by <4>) we see the most
relevant documents — a mix of blogs, Web pages and per-
sonal profiles (not shown in the figure for privacy reasons).
On the right <1> is the list of related people, calculated as
described in the previous section. The “Related tags” tag-
cloud <2> is calculated in a similar manner — each tag is
a category, and the weight of the association of a tag with
a document is the number of times this tag was used to
describe this document. <3> shows some additional facets
which aid navigation within the search results.

The list of “Related people” is not necessarily the list of
IBM’s experts on the topic. Experts who never bookmarked
or blogged obviously cannot be retrieved by our system.
Rather, the“Related people”are people that expressed inter-
est in the topic — bookmarked a relevant document, posted
a relevant blog entry, or commented on such an entry. In
the next section (Evaluation) we show using a large survey
that people generally agree with the system’s determination
of how “related” they are to various queries.

As explained in the previous section, a query can be either
textual (in which case documents are matched and scored
using Lucene’s search algorithms), or a reference to a per-
son (in which case the documents related to this person are
returned, scored according to the relationship strength). Hy-
brid queries, containing both text and a reference to one or
more person, are also possible.



Person and hybrid queries have a number of interesting
uses. For example, giving a person as a query (or using a
“everything related to this person” link) yields not only the
documents related to this person, but as usual also shows
related people, i.e., people who were interested in the same
documents as the given person. Another useful example:
For any query, if person X is a“Related person”, then adding
this person X to the query will find the intersection of the
documents that matched the original query with the docu-
ments related to X, which is essentially the evidence of why
person X turned up as a related person in the first place. In
our application, the user can click on each of the names in
the “Related people” list and choose “why this person?”, to
run this hybrid query. Users find this sort of evidence an
important feature of the application. Another link for each
person, “who is this?”, displays directory information.

3. EVALUATION
Our unified search system returns both documents and

people for every query. Therefore, to evaluate the quality of
our system we needed to evaluate the quality of both lists.

We evaluated the document results using standard IR
evaluation methodology — running 50 example queries, and
having the results be judged by humans. We found the doc-
ument results to be of very high quality (e.g., P@10 was
0.81). The very high precision of the top results demon-
strates the capability of the social search engine to focus
on good resources from the entire collection, while existing
enterprise search solutions struggle with noisy datasets and
have difficulties in retrieving high quality results. However,
the document results are outside the scope of this workshop
and therefore we will not go into details about this evalu-
ation. Rather, in this section, we will describe in detail a
large user study that we performed to evaluate the quality
of the “related people” list.

From the log of queries submitted by real users to the
application, we arbitrarily chose over 60 queries and ran
them to receive a ranked list of 100 people for each query,
using our baseline algorithm.

We then emailed all these people a list of 6-15 queries,
which we defined as topics, to rate on a Likert scale of 1 to 5
whether they think the topic is relevant to them or not. We
intentionally left the definition of relevance vague to address
all kinds of relevance. According to replies we have received
during the study, people conceived relevant to them being
relevant to their work in general, their current project, their
personal interests, or the interests of their team. We also did
not reveal the nature of the experiment or where the topics
were generated from. All of the people received along with
the topic they appeared related to, a list of topics they were
not found related to, thus all potentially had both relevant
and irrelevant topics to rate.

We chose email rather than using a Web survey because
we thought people will be more obliged to answer an email
directed to them. Emails also allowed us to disassociate the
application itself from the topics and hence increasing the
likelihood of truthful answers not dictated by our ranking
scheme. We have sent over 1400 emails for which 612 unique
people replied with ratings. Those people came from 116
IBM locations in 38 countries and we assume most of them
have no knowledge of each other or of our application.

From the replies we generated 8835 vote pairs of user
and self-rating for 60 topics. We thus created a benchmark

against which we evaluated our algorithms. To quantify our
results’ agreement with the benchmark, we used normalized
discounted cumulative gain (NDCG) [9], which measures a
ranked list’s agreement with known relevance levels. For
the NDCG calculation we used gains (0,1,3,6,10), for the 5
scale levels respectively, and the discount function used was
−log(rank + 1). The NDCG scores we report below are an
average over the set of topics.

Despite our survey’s breadth, it is to some degree biased
by self-rating. Our original attempt to ask people to rate
other people’s interest in various topics had failed, because
most respondents simply did not know enough about each
other. This is why we had to ask people to rate their own
interests. But self-esteem and different interpretations of
the instructions inevitably lead to different people attaching
different meanings to the 5 levels of the rating scale. Some
people tend to over-estimate their interest in every topic,
while others tend to under-estimate it. In most cases, this
issue can be thought of as rating noise that is canceled out by
the large number of respondents. But it can still bias some
measurements. In particular, our ief feature is specifically
designed to downplay people who over-represent their inter-
ests — contrary to those people’s self-rating — and therefore
we expect this survey not to measure the full value of this
feature.

3.1 Results

NDCG
Ranking 10 20 30
count-only 0.71 0.69 0.68
sum of doc scores 0.75 0.73 0.72
+relationship weighting 0.76 0.74 0.73
+person static-score using ief 0.77 0.76 0.74

Table 1: The agreement of retrieved people with the
system ranking of their relatedness to the searched
topics, as measured by NDCG of top k results

Table 1 shows the NDCG of top k people, k = 10, 20, 30,
measuring the agreement of retrieved people with the sys-
tem’s judgment of their relatedness to the searched topics.
The different rows in the table show the agreements as pro-
gressively more and more features of the faceted search sys-
tem were employed: The first row provides the results when
people are ranked by just counting the number of their re-
lated documents (this is the “Votes” method of [11]). In the
second row we ranked by summing the score of related docu-
ments to each of the people (“CombSUM”of [11]). The third
row shows the results when associating different weights
with the different relation types between people and doc-
uments (as in [2]); By exhaustive search we found the opti-
mal weights to be (1, 3.1, 0) for the relation types (“tagger”,
“blogger”, “commenter”) respectively. Finally, in the last row
we add the ief static-score for people. This row represents
our full person-scoring mechanism as described in section 2.

There are several interesting insights from these results.
First, the results exhibit better agreement as we consider
document scores, optimal relative weights for the different
relation types, and static scores for people. Second, the
optimal weight for the relation between a blog entry and a
commenter was found to be negative in this study (above, we
used a zero weight instead, which was slightly sub-optimal).



This means that a person who comment on a blog entry is
actually (slightly) less likely to be interested in the entry’s
topic than a person who did not comment on that entry.
While we do not have full explanation for this result, we
speculate that there are people who comment to a blog not
because of its specific content but rather because of its pop-
ularity. This phenomenon should be further investigated.

4. SUMMARY
In this research, we proposed a simple yet highly effective

method for a search engine to return both relevant docu-
ments and relevant people for every query. The method also
allows queries to contain people instead of, or in addition
to, textual terms. The list of people related to the query is
calculated at search time using an enhanced faceted search
engine, based on person-document relationships mined from
Web 2.0 applications.

We proved that our faceted-search based method gives
identical results to a more recognizable vector space model,
but showed that our method has unique advantages — such
as working efficiently with dynamically-changing data and
taking advantage of advanced features of existing search en-
gines (e.g., phrase search) that are not part of the classic
vector space model.

We described an implementation of our method, a social
search engine called “Cow Search” deployed in IBM’s in-
tranet. The social search engine provides several unique
features not found in standard enterprise search solutions:
It returns higher quality documents, as well as related peo-
ple, for every query. It also allows referring to people (not
just textual terms) in queries — a feature that has several
interesting applications (e.g., it can be used to show the evi-
dence that lead us to believe that a certain person is related
to a given query).

Informal feedback from users of “Cow Search” has been
very positive; Users were very pleased with the quality of
both document and related-people results. We also con-
ducted a large-scale formal evaluation. We measured the
precision of the returned documents to be exceptionally high
(P@10 = 0.81), and conducted a large user study, with over
600 respondents, to measure how much people agree with
which topics our algorithm said were related to them. The
results of this study show high agreement, and that the full
method which we described is clearly better than more naive
methods, such as using counting-only faceted search.
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