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Abstract
Virtualization is a prominent technology used in data centers
around the world. While many kinds of workloads can run
at near-native performance even when virtualized, I/O inten-
sive workloads still suffer from high overhead precluding the
use of virtualization in many applications. In this paper we
tackle the problem of improving the performance of paravir-
tual I/O. We propose an exitless paravirtual I/O model, under
which guests and the hypervisor, running on distinct cores,
exchange exitless notifications instead of costly exit-based
notifications. Our initial proof of concept improved through-
put by 45% and latency by25µsec compared to a traditional
network paravirtual I/O model. We show that a single hyper-
visor I/O core can become saturated when serving multiple
I/O intensive guests, and further research is required to im-
prove scalability in this scenario.

1. Introduction
In recent years machine virtualization has taken on more and
more roles in the modern computing environment, as virtu-
alization hardware and software have been quickly advanc-
ing. Virtualization is used for server consolidation, for build-
ing huge and flexible compute clouds, and even for hosting
users’ desktops. The most important benefit of virtualization
is flexibility: Virtualization decouples the guest operating-
system from the physical hardware; It allows software to
control the OS and its resources (CPU, memory, etc.) in a
flexible way using ahypervisor and various management
stacks.

While the main reason for using virtualization is flex-
ibility, the main reason not to use it is thevirtualization
overhead. This overhead is defined as the amount of re-
sources, especially CPU time, that a workload running on
a virtual machine (VM) consumes beyond those consumed
by the same workload onbare metal (a physical machine).
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While x86 virtualization has been available for many years,
it gained momentum when new software [3, 6] and hardware
[2, 5, 28] first allowed the performance of many useful guest
workloads to achieve levels close to that of bare metal.

Achieving bare-metal performance (and not, say, “just”
20% below it) has become a holy grail of virtualization re-
search. For compute-bound workloads, the above referenced
approaches already achieved this goal of bare-metal perfor-
mance. For workloads that made heavy use of the MMU
(memory, paging, process context switching), further re-
search on two-dimensional page tables and huge pages [10]
was necessary before near bare-metal performance was
achievable.

The biggest remaining virtualization-overhead problem
is for I/O-bound workloads, e.g., workloads which are
network- or disk-intensive. Three major techniques are com-
mon for hosts to virtualize I/O services for their guests: 1.
Emulation [27], where a familiar device (e.g., a common net-
work card) is emulated. 2.Paravirtualization [24, 27], which
emulates a new device, designed not to resemble any existing
device but to be as efficient as possible when used across the
guest-host boundary. 3.Device assignment [12, 30], where
the host gives a guest (mostly) direct access to a certain
physical device.

The performance of these three techniques are in the
above order, with device assignment being the best of the
three [30]. The performance superiority of device assign-
ment became even clearer when ELI [13], designed for de-
vice assignment, recently achieved the coveted bare-metal
performance for I/O workloads. ELI removed most of the
virtualization overhead by eliminating hypervisor involve-
ment (a.k.a.exits) in handling of interrupts from the assigned
device. With such Exit-Less Interrupts, the entire I/O critical
path became exitless, and could therefore proceed at bare-
metal speeds.

Despite the proven performance advantage of device as-
signment, in many use cases paravirtual I/O is preferred or
even required. Device assignment cannot be used if the host
wishes to offer a device with no physical counterpart (e.g.,
a virtual disk stored as a file in the host’s filesystem), or
if the host wishes to control the guest’s use of the device
(e.g., process every packet that goes in and out of the guest).
Device assignment also requires more expensive hardware



(an IOMMU [1] and, if the same device is to be assigned to
several guests, SRIOV-supporting devices [11, 22]). Finally,
device assignment also complicates VM migration [31] and
host-side memory overcommitment [30]. For these and other
reasons, most real-world applications of virtualization today
choose to use paravirtual I/O.

In this short paper we propose a new technique for sig-
nificantly boosting the performance of paravirtual I/O. Our
proposed method was inspired by ELI [13] in that our goal
was also to make the I/O critical path exitless.

In Section 2 we motivate our work and discuss related re-
search. In Section 3 we outline our proposed model, which
we call ELVIS (Exit-Less Virtual I/o System). As we shall
explain, the techniques used in ELI are also useful for
avoiding some of the exits associated with paravirtual I/O
(namely, those related to host-to-guest notifications), while
we propose new techniques to avoid the remaining exits, and
move the host’s work out of the guest’s way, to a separate
core, a sidecore [15, 16].

In Section 4 we describe our implementation of ELVIS,
on theKVM hypervisor [14] and onvhost [20], an efficient
in-kernel implementation of the virtio [24] paravirtual I/O
framework.

In Section 5 we present some promising preliminary re-
sults: We show that, indeed, the I/O path becomes exitless.
For a network-intensive workload on one guest virtual CPU
(VCPU), we measure a throughput improvement of 45%
over unmodified vhost-net. We show that the throughput im-
provement doesnot come at the expense of latency (which
is actually reduced by around 22µsec), even when one core
handles the I/O of several guests. We demonstrate that mul-
tiple guests can effectively share one I/O core, until this core
is saturated, though more research in necessary to increase
the number of guests that a single I/O core can serve.

2. Motivation and Related Work
Spatial division of cores, as opposed to temporal division,
is commonly used by hypervisors because it improves per-
formance on multi-core systems [15, 17, 18]. To obtain the
benefits of spatial division, hypervisors exposes paravirtual
I/O adapters designed to handle all the I/O requests asyn-
chronously. Using asynchronous I/O models, the guest can
continue running on one core while the hypervisor handles
the I/O requests on a different core. However, as we show
later in Section 5, spatial division of cores still suffers from
a significant performance overhead in virtual environments.
The main cause of this overhead is the high cost to send no-
tifications between cores.

In a non-virtual environment, software can use a light-
weight architectural mechanism, Inter-Processor Interrupts
(IPI), to send notifications. In contrast, in a virtual environ-
ment, sending an IPI is considered a privileged operation and
requires hypervisor intervention. Thus, if the guest sendsan
IPI, the hypervisor needs to trap and emulate the operation.

Trapping the guest execution requires switching to the hy-
pervisor context and returning to the guest context. These
switches, known as exits, significantly degrade the perfor-
mance of virtual machines [2, 8, 16]. In the opposite direc-
tion, if the hypervisor sends an IPI to notify the guest, the
CPU also forces an exit because interrupts generated by the
physical hardware are also considered privileged events. The
chain of events for handling paravirtual I/O requests is illus-
trated in Figure 1(a). First, the guest performs a privileged
instruction to request an I/O operation (guest-to-host notifi-
cation). This instruction forces an exit and switches to the
hypervisor context. The hypervisor examines the exit cause,
starts processing the I/O request on a separate core and re-
sumes the guest execution. Finally, the hypervisor notifies
the completion of the I/O request (host-to-guest notification)
by injecting a virtual interrupt to the guest, which requires
an additional exit.

SplitX [16] proposes hardware extensions for running vir-
tual machines on dedicated cores, with the hypervisor run-
ning in parallel on a different set of cores. The paper pro-
poses a new hardware mechanism for exitless communi-
cation between cores, which could be used for paravirtual
I/O notifications between guest and host cores. In contrast,
ELVIS does not require any hardware modifications and runs
on current hardware.

VPE [18] also uses dedicated cores for the hypervisor, but
does not remove the costly exits for hypervisor-to-guest no-
tifications. The number of these notifications can be reduced
by virtual interrupt coalescing [4].

Previous work [9] showed that using polling in both guest
and host, along with other optimizations, can elimate I/O
virtualization overheads in a storage controller. As we elab-
orate in Section 3, ELVIS avoids guest-side polling which
adversely impacts performance.

Many papers tried to reduce the overhead of paravir-
tual I/O. Most of them did so by enhancing the backend
driver in the hypervisor or making generic improvements
such as avoiding needless copies between the hypervisor and
the guest. While these approaches are viable, they are or-
thogonal to our approach of improving the communication
between the frontend driver in the guest and the backend.
Mansley et al. [19] propose a hybrid of paravirtual I/O and
device assignment where the slow path goes through the hy-
pervisor and the fast path goes directly to the device. Apart
from the inherent problems with device assignment (e.g.,
difficult live migration), this approach does not work when
there is no physical device, e.g., when the guest’s disk is
backed by a file on the host filesystem. Santos et al. [23, 26]
instrument Xen’s paravirtual drivers and reduce overhead by
avoiding packet copies and using a multiqueue NIC. In con-
trast, our approach does not require special hardware.

ELI [13] achieves 97–100% of bare-metal performance
by delivering interrupts sent by physical devices to the guest
without hypervisor intervention (exits). ELI focused only



Figure 1. Exits during paravirtual I/O handling.

on physical assigned devices while we focus on paravirtual
devices.

3. Exitless Notifications
We propose ELVIS (Exit-Less Virtual I/o System), an exit-
less paravirtual I/O model for virtual machines, which takes
advantage of spatial division of cores, yet avoids exits caused
by inter-core communication.

Different techniques are needed to provide exit-less no-
tifications in the two directions — from guest to host, and
from host to guest:

3.1 Guest-to-host Notifications

With ELVIS, when any of the guests wishes to send a no-
tification to the hypervisor, instead of performing a costly
privileged instruction, the guest simply writes the notifica-
tion in a memory area shared with the hypervisor. The hy-
pervisor polls the memory area from a different core and
handles the I/O request when needed. This type of polling
technique is efficient in virtual environments [9, 18] but re-
quires a fully dedicated core to poll the shared memory area.
Dedicating an additional core for each VM is unacceptable
and may waste CPU resources. Thus, ELVIS uses a single
dedicated core to serve multiple VMs, considering fairness,
quality of service and performance. As we show later in Sec-
tion 5, ELVIS can efficiently serve multiple VMs using a
single dedicated core.

For workloads which are not I/O-intensive, the waste
inherent in excessive polling may outweigh the benefits
of exit-less notifications. It is therefore beneficial to dy-
namically switch between polling and traditional exit-based

guest-to-host notifications. Such switching is often used in
the context of interrupt mitigation [21, 25], and has also been
used for paravirtual I/O by VMWare’s VMXNET3 [29].

3.2 Host-to-guest Notifications

On the opposite direction (host-to-guest notifications), if
each guest were to poll for notifications sent by the hyper-
visor, all the guests would waste a significant amount of cy-
cles that could otherwise be used to run more useful work or
just kept unused to reduce power consumption. Due to these
disadvantages, polling for notifications in the guest side is
impractical.

Instead, ELVIS uses inter-processor interrupts (IPIs) to
send notifications from the hypervisor’s I/O thread to the
guest. Normally, these interrupts would cause guest exits,
and their associated performance penalties. We therefore use
the Exit-Less Interrupts (ELI) technique [13] to deliver these
notifications directly to the guest. ELI asks the processor to
deliver all interrupts to the running guest, with the guest’s
interrupt descriptor table (IDT) shadowed so that only the
intended interrupts are actually delivered to the guest andthe
rest cause an exit to the hypervisor. The ELI paper focused
on assigned devices and on the interrupts they generate —
but we can also use the same mechanism for delivering an
IPI directly to the guest.

Figure 1(b) illustrates that, combining guest-to-host polling
based notifications with host-to-guest exitless IPI based no-
tifications, ELVIS handles I/O without exits on the critical
path.



4. Proof of Concept
To measure the impact of exitless notifications on paravir-
tual I/O performance, we implemented a proof of concept
of ELVIS within the KVM hypervisor. The KVM hyper-
visor [14] is implemented as a Linux kernel module that
extends the kernel with hypervisor capabilities, driven by
a QEMU [7] user process. KVM offers two different im-
plementations for paravirtual network I/O devices: (1) a
user-space implementation, part of QEMU (qemu-virtio-
net); and (2) a Linux kernel module implementation (vhost-
net). Both implementations share the same guest driver. We
based ELVIS on vhost-net because it performs significantly
better than qemu-virtio-net [20]. While we focus on KVM
and vhost-net, ELVIS principles are also applicable to other
hypervisors and other paravirtual I/O implementations.

To take advantage of multi-core systems and handle I/O
asynchronously, KVM creates multiple threads. For each
VM, KVM creates a thread per VCPU to run the guest code
and an additional thread to handle I/O requests (I/O thread).
Thus, a uniprocessor guest running I/O intensive workloads
will have two active threads that can run simultaneously
on different cores. While the guest and KVM use shared
ring buffers to transmit and receive data efficiently [24],
they still need to notify each other when new buffers are
ready to be processed. The guest sends notifications to KVM
executing a programmable I/O instruction (PIO). PIO is a
privileged instruction, therefore causing an exit. KVM sends
notifications to the guest in the form of virtual interrupts
generated by the paravirtual I/O device. Unfortunately, due
to x86 hardware virtualization limitations, virtual interrupts
cannot be delivered to the guest while it is still running.
KVM first forces an exit to stop the execution of the guest
and then injects the corresponding virtual interrupt.

We applied the ELVIS model to KVM: First, we modified
vhost-net to poll for notifications sent by the guests and
neutralized the usage of the costly PIO instructions. To keep
fairness and maximize performance across multiple VMs,
we also modified vhost-net to use a single thread to handle
multiple devices (i.e., multiple VMs) instead of a thread
per device. Otherwise, multiple vhost-net I/O threads would
be competing with each other for CPU cycles. Finally, we
changed KVM to deliver virtual interrupts using IPIs and
ELI. This last mechanism allows vhost-net to send exitless
notifications to the running guests.

5. Evaluation
We analyzed ELVIS’ impact on virtual network I/O mea-
suring throughput and latency. Performance-minded appli-
cations would typically dedicate whole cores to guests (sin-
gle VCPU per core) thus we limited our evaluation to this
case. Our test machine was an IBM System x3550 M2,
which is a dual-socket, 4-cores-per-socket server equipped
with Intel Xeon X5570 CPUs running at 2.93 GHz. The sys-
tem included 24GB of memory and an Emulex OneConnect
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Figure 2. Total throughput (from all VMs) of Netperf TCP
Stream, when run from 1 to 7 VMs serviced by one I/O core.

10Gbps NIC. We used another similar remote server con-
nected directly by 10Gbps fiber as the target for I/O trans-
actions. We set the Maximum Transmission Unit (MTU) to
its default size of 1500 bytes; we did not use jumbo Ethernet
frames. The host ran Linux 3.1, with IOMMU enabled, and
Qemu 0.14.0. The guest ran Linux 3.1, and its memory was
backed by huge (2 MB) pages in the host.

We used Netperf TCP-stream to measure throughput im-
provements. This benchmark opens a single TCP connection
to the remote machine, and makes as many rapid write() calls
of a given size as possible. We configured the benchmark to
perform 64 byte writes, which fully loaded the tested ma-
chine’s CPUs (so that throughput can be compared), but did
not saturate the remote machine.

As described in Section 4, the unmodified version of
vhost-net creates a thread per I/O device. Unfortunately,
vhost-net threads continue running on a CPU as far as they
have work to perform. This implementation does not con-
sider fairness among VMs when multiple vhost-net threads
need to share the same CPU in a non-preemptible kernel (de-
fault in server setups). If multiple vhost-net threads run on
the same core, they can starve each other. In this case, only
one VM might achieve good performance while the others
experience extremely low performance. To avoid this prob-
lem and make a fair comparison with ELVIS, we improved
the implementation of vhost-net to periodically release the
core when needed, so that each vhost-net thread gets an
equal and proportional part of the CPU. Our improvement
has already been accepted into the Linux kernel, and will be
part of future releases.

Figure 2 compares the results we obtained with the im-
proved vhost-net (vanilla) and with ELVIS. To verify that
ELVIS is able to serve multiple VMs using a single I/O
thread running on a dedicated core, we ran the experiment
using 1 through 7 VMs. In all the configurations we used one
core per VM and one additional core to run all the vhost-net
I/O threads. We can see that ELVIS improved throughput by
45% and 23% for 1 and 2 VMs respectively. As is evident
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Figure 3. Average latency as measured by Netperf UDP-
RR, when run from 1 to 7 VMs. With ELVIS, latency is
lower, and remains low even when multiple VMs are ser-
viced by one I/O core.

in the figure, the single vhost-net I/O core (used by both
vanilla vhost-net and ELVIS) was saturated at a through-
put of around 3100 Mbps, leading to a plateau for 3 VMs
and more, where both ELVIS and vanilla could no longer
scale. This scalability problem would not be an issue for less
bandwidth-intensive workloads (as we demonstrate below),
and can also be alleviated by allocating more than one I/O
core. Moreover, we believe that with further research, the I/O
capacity of the single I/O core can be significantly increased,
thereby significantly increasing the number of guests which
could be served by a single I/O core.

As expected, ELVIS was able to reduce the average num-
ber of exits per second from 120,000 to only 800 when run-
ning a single VM and from 32,000 to 800 per core when
running 7 VMs. Most of these remaining 800 exits per sec-
ond are not related to I/O — for example, 500 of them are
related to timer interrupts.

The number of notifications (exits for vanilla) per core de-
creases as the number of VMs increases. From 1 to 2 VMs
throughput more than doubled because the single I/O core
was batching and coalescing multiple notifications: While
the I/O thread processes requests for the first VM, the in-
coming requests for the second VM are batched. For a single
batch, the I/O thread sends only one notification. This side-
effect improved throughput at the cost of higher latency. Ad-
ditionally, when running 3 VMs or more the total throughput
remains constant and therefore each VM performs less work,
further decreasing the number of notifications per core.

We measured ELVIS’s latency improvement using Net-
perf UDP Request-Response, which sends a UDP packet
and waits for a reply before sending the next. Figure 3
presents the results. We can see that ELVIS reduced latency
by 25µsec compared to vanilla vhost-net when only a sin-
gle VM was running. With multiple VMs ELVIS reduced
the average latency per VM by22µsec. This improvement
was possible because ELVIS’ single thread model, as op-

posed to multiple threads per VM, combined with exitless
notifications significantly reduced the time it takes to detect
and handle the I/O requests sent by the guests. Compared
to the TCP stream benchmark we previously analyzed, UDP
Request-Response did not saturate the I/O core and scaled
very well.

6. Conclusions and Future Work
In this paper we argued that a high-performance paravirtual
I/O system must be exitless. We proposed a new model for
exitless notifications between guests and the hypervisor run-
ning on distinct cores. We described our initial implementa-
tion of this model and evaluation results which showed im-
provement of up to 45% in throughput and25µsec reduction
in latency over the baseline virtualized system.

However, our evaluation demonstrated that more research
is necessary to make exit-less paravirtual I/O efficient for
more workloads, especially when running multiple VMs
concurrently. In particular we plan to evaluate (and increase)
the number of VMs that a single I/O thread can handle,
to find the right balance to dynamically create and destroy
I/O threads depending on workload characteristics and the
number of active VMs, and to dynamically switch between
polling and exit-based notifications. We also plan to extend
this work to disk I/O.
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