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Abstract
Direct device assignment enhances the performance of guest 
virtual machines by allowing them to communicate with 
I/O devices without host involvement. But even with device 
assignment, guests are still unable to approach bare-metal 
performance, because the host intercepts all interrupts, 
including those generated by assigned devices to signal 
to guests the completion of their I/O requests. The host 
involvement induces multiple unwarranted guest/host con-
text switches, which significantly hamper the performance 
of I/O intensive workloads. To solve this problem, we pres-
ent ExitLess Interrupts (ELI), a software-only approach for 
handling interrupts within guest virtual machines directly 
and securely. By removing the host from the interrupt han-
dling path, ELI improves the throughput and latency of 
unmodified, untrusted guests by 1.3×–1.6×, allowing them 
to reach 97–100% of bare-metal performance even for the 
most demanding I/O-intensive workloads.

1. INTRODUCTION
I/O activity is a dominant factor in the performance of virtu-
alized environments,17, 25 motivating direct device assignment 
where the host assigns physical I/O devices directly to guest 
virtual machines. Examples of such devices include disk 
controllers, network cards, and GPUs. Direct device assign-
ment provides superior performance than alternative I/O vir-
tualization approaches, because it almost entirely removes 
the host from the guest’s I/O path. Without direct device 
assignment, I/O-intensive workloads might suffer unaccept-
able performance degradation.17, 19, 25 Still, on x86 CPUs (the 
most popular platform for virtualization), direct assignment 
alone does not allow I/O-intensive workloads to approach 
bare-metal (nonvirtual) performance6, 9, 16, 25; by our measure-
ments, such workloads achieve only 60–65% of bare-metal 
performance. We find that nearly the entire performance dif-
ference is induced by interrupts of assigned devices.

I/O devices generate interrupts to notify the CPU of I/O 
operations’ completion. In virtualized settings, each device 
interrupt triggers a costly exit,1, 6 causing the guest to be sus-
pended and the host to be resumed, regardless of whether or 
not the device is assigned. The host first signals to the hard-
ware the completion of the physical interrupt as mandated 
by the x86 specification. It then injects a corresponding (vir-
tual) interrupt to the guest and resumes the guest’s execu-
tion. The guest in turn handles the virtual interrupt and, 
like the host, signals completion, believing that it directly 

interacts with the hardware. This action triggers yet another 
exit, prompting the host to emulate the completion of the 
virtual interrupt and to resume the guest again. The chain of 
events for handling interrupts is illustrated in Figure 1.

The guest/host context switches caused by interrupts induce 
a tolerable overhead for non-I/O-intensive workloads, a fact 
that allowed some previous virtualization studies to claim 
they achieved bare-metal performance.5, 14 But our measure-
ments indicate that this overhead quickly ceases to be tol-
erable, adversely affecting guests that require throughput 
of as little as 50 Mbps. Notably, previous studies improved 
virtual I/O by relaxing protection13, 14 or by modifying guests,5 
whereas we focus on the most challenging virtualization sce-
nario of untrusted and unmodified guests.

Many previous studies identified interrupts as a major 
source of overhead,6, 15 and many proposed techniques to 
reduce it, both in bare-metal settings10, 21, 23, 26 and in virtual-
ized settings3, 9, 16, 25. In principle, it is possible to tune devices 
and their drivers to generate fewer interrupts, thereby 
reducing the related overhead. But doing so in practice is 
far from trivial22 and can adversely affect both latency and 
throughput.

Our approach rests on the observation that the high inter-
rupt rates experienced by a core running an I/O-intensive 
guest are mostly generated by devices assigned to the guest. 
Indeed, we measure rates of over 150K physical interrupts 
per second, even while employing standard techniques to 
reduce the number of interrupts, such as interrupt coalesc-
ing3, 21, 26 and hybrid polling.10, 23 As noted, the resulting guest/
host context switches are nearly exclusively responsible for 
the inferior performance relative to bare metal. To eliminate 
these switches, we propose ExitLess Interrupts (ELI), a soft-
ware-only approach for handling physical interrupts directly 
within the guest in a secure manner.

A full version of this paper is available in Proceedings of 
ACM Architectural Support for Programming Languages 
(ASPLOS) 2012.
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Figure 1. Exits during interrupt handling.
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With ELI, physical interrupts are delivered directly to 
guests, allowing them to process their devices’ interrupts 
without host involvement; ELI makes sure that each guest 
forwards all other interrupts to the host. With x86 hardware, 
interrupts are delivered using a software-controlled table of 
pointers to functions, such that the hardware invokes the 
kth function whenever an interrupt of type k fires. Instead of 
utilizing the guest’s table, ELI maintains, manipulates, and 
protects a “shadow table,” such that entries associated with 
assigned devices point to the guest’s code, whereas the other 
entries are set to trigger an exit to the host.

We experimentally evaluate ELI with micro- and macro-
benchmarks. Our baseline configuration employs standard 
techniques to reduce (coalesce) the number of interrupts, 
demonstrating ELI’s benefit beyond the state-of-the-art. We 
show that ELI reduces CPU overheads that limit the attain-
able throughput, and thereby it improves the throughput 
and latency of guests by 1.3×–1.6×. Notably, whereas I/O-
intensive guests were so far limited to 60–65% of bare-metal 
throughput, with ELI they reach performance that is within 
97–100% of the optimum. Consequently, ELI makes it pos-
sible to, for example, consolidate traditional data-center 
workloads that nowadays remain nonvirtualized due to 
unacceptable performance loss.

2. MOTIVATION AND RELATED WORK
For the past several decades, interrupts have been the main 
method by which hardware devices can send asynchronous 
events to the operating system.7 The main advantage of 
using interrupts to receive notifications from devices over 
polling them is that the processor is free to perform other 
tasks while waiting for an interrupt. This advantage applies 
when interrupts happen relatively infrequently, as was the 
case until high performance storage and network adapters 
came into existence. With these devices, the CPU can be 
overwhelmed with interrupts, leaving no time to execute 
code other than the interrupt handler.18 When the operating 
system is run in a guest, interrupts have a higher cost, since 
every interrupt causes multiple exits.1, 6 ELI eliminates most 
of these exits and their associated overhead.

In the remainder of this section we introduce the existing 
approaches to reduce the overheads induced by interrupts, 
and we highlight the novelty of ELI in comparison to these 
approaches. We subdivide the approaches into two categories.

2.1. Generic interrupt handling approaches
We now survey approaches that apply equally to bare metal 
and virtualized environments.

Polling disables interrupts entirely and polls the device 
for new events at regular intervals. The benefit is that han-
dling device events becomes synchronous, allowing the 
operating system to decide when to poll and thus limit the 
number of handler invocations. The drawbacks are added 
latency, increased power consumption (since the proces-
sor cannot enter an idle state), and wasted cycles when no 
events are pending. If polling is done on a different core, 
latency is improved, but a core is wasted.

A hybrid approach for reducing interrupt-handling over-
head is to switch dynamically between using interrupts and 

polling.10, 18 Linux uses this approach by default through the 
NAPI mechanism.23 Switching between interrupts and poll-
ing does not always work well in practice, partly due to the 
complexity of predicting the number of interrupts a device 
will issue in the future.

Another approach is interrupt coalescing,3, 21, 26 in which 
the OS programs the device to send one interrupt in a time 
interval or one interrupt per several events, as opposed to 
one interrupt per event. As with the hybrid approaches, 
coalescing delays interrupts and hence might increase 
latency15 and burst TCP traffic.26 Deciding on the right 
model and parameters for coalescing is particularly com-
plex when the workload runs within a guest.9 Getting it 
right for a wide variety of workloads is hard if not impossi-
ble.3, 22 Unlike coalescing, ELI does not reduce the number 
of interrupts; instead it streamlines the handling of inter-
rupts targeted at virtual machines. Coalescing and ELI are 
therefore complementary, as we show in Section 5.4: coalesc-
ing reduces the number of interrupts, and ELI reduces 
their cost.

All evaluations in Section 5 were performed with the 
default Linux configuration, which combines the hybrid 
approach (via NAPI) and coalescing.

2.2. Virtualization-specific approaches
Using an emulated or paravirtual5 device provides much flex-
ibility on the host side, but its performance is much lower 
than that of device assignment, not to mention bare metal. 
Liu16 shows that device assignment of SR-IOV devices can 
achieve throughput close to bare metal at the cost of as much 
as 2× higher CPU utilization. He also demonstrates that inter-
rupts have a great impact on performance and are a major 
expense for both the transmit and receive paths.

There are software techniques2 to reduce the number of 
exits by finding blocks of exiting instructions and exiting only 
once for the whole block. These techniques can increase the 
efficiency of running a virtual machine when the main rea-
son for the overhead is in the guest code. When the reason 
is in external interrupts, such as for I/O intensive workloads 
with SR-IOV, such techniques do not alleviate the overhead.

Dong et al.9 discuss a framework for implementing SR-IOV 
support in the Xen hypervisor. Their results show that 
SR-IOV can achieve line rate with a 10Gbps network inter-
face controller (NIC). However, the CPU utilization is 148% 
of bare metal. In addition, this result is achieved using adap-
tive interrupt coalescing, which increases I/O latency.

Several studies attempted to reduce the aforementioned 
extra overhead of interrupts in virtual environments. vIC3 
discusses a method for interrupt coalescing in virtual stor-
age devices and shows an improvement of up to 5% in a 
macro-benchmark. Their method uses the number of “com-
mands in flight” to decide how many to coalesce. Therefore, 
as the authors say, this approach cannot be used for network 
devices due to the lack of information on commands (or 
packets) in flight. Dong et al.8 use virtual interrupt coalescing 
via polling in the guest and receive side scaling to reduce net-
work overhead in a paravirtual environment. Polling has its 
drawbacks, as discussed above, and ELI improves the more 
performance-oriented device assignment environment.
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NoHype13 argues that modern hypervisors are prone to 
attacks by their guests. In the NoHype model, the hypervisor 
is a thin layer that starts, stops, and performs other admin-
istrative actions on guests, but is not otherwise involved. 
Guests use assigned devices and interrupts are delivered 
directly to guests. No details of the implementation or per-
formance results are provided. Instead, the authors focus on 
describing the security and other benefits of the model.

3. X86 INTERRUPT HANDLING
To put ELI’s design in context, we begin with a short overview 
of how interrupt handling works on x86 today.

3.1. Interrupts in bare-metal environments
x86 processors use interrupts and exceptions to notify sys-
tem software about incoming events. Interrupts are asyn-
chronous events generated by external entities such as I/O 
devices; exceptions are synchronous events—such as page 
faults—caused by the code being executed. In both cases, 
the currently executing code is interrupted and execution 
jumps to a pre-specified interrupt or exception handler.

x86 operating systems specify handlers for each inter-
rupt and exception using an architected in-memory table, 
the Interrupt Descriptor Table (IDT). This table contains 
up to 256 entries, each entry containing a pointer to a han-
dler. Each architecturally-defined exception or interrupt has a 
numeric identifier—an exception number or interrupt vec-
tor—which is used as an index to the table. The operating 
systems can use one IDT for all of the cores or a separate IDT 
per core. The operating system notifies the processor where 
each core’s IDT is located in memory by writing the IDT’s 
virtual memory address into the Interrupt Descriptor Table 
Register (IDTR). Since the IDTR holds the virtual (not physi-
cal) address of the IDT, the OS must always keep the corre-
sponding address mapped in the active set of page tables. In 
addition to the table’s location in memory, the IDTR holds 
the table’s size.

When an external I/O device raises an interrupt, the pro-
cessor reads the current value of the IDTR to find the IDT. 
Then, using the interrupt vector as an index to the IDT, the 
CPU obtains the virtual address of the corresponding handler 
and invokes it. Further interrupts may or may not be blocked 
while an interrupt handler runs.

System software needs to perform operations such as 
enabling and disabling interrupts, signaling the comple-
tion of interrupt handlers, configuring the timer interrupt, 
and sending interprocessor interrupts (IPIs). Software 
performs these operations through the Local Advanced 
Programmable Interrupt Controller (LAPIC) interface. The 
LAPIC has multiple registers used to configure, deliver, and 
signal completion of interrupts. Signaling the completion 
of interrupts, which is of particular importance to ELI, is 
done by writing to the end-of-interrupt (EOI) LAPIC register. 
The newest LAPIC interface, x2APIC,11 exposes its registers 
using model specific registers (MSRs), which are accessed 
through “read MSR” and “write MSR” instructions. Previous 
LAPIC interfaces exposed the registers only in a predefined 
memory area which is accessed through regular load and 
store instructions.

3.2. Interrupts in virtual environments
x86 hardware virtualization11 provides two modes of opera-
tion, guest mode and host mode. The host, running in host 
mode, uses guest mode to create new contexts for running 
guest virtual machines. Once the processor starts running a 
guest, execution continues in guest mode until some sensi-
tive event forces an exit back to host mode. The host handles 
any necessary events and then resumes the execution of 
the guest, causing an entry into guest mode. These exits and 
entries are the primary cause of virtualization overhead,1, 6, 

19 which is particularly pronounced in I/O intensive work-
loads.16, 20, 24 It comes from the processor cycles spent switch-
ing between contexts, the time spent in host mode to handle 
the exit, and the resulting cache pollution.

This work focuses on running unmodified and untrusted 
operating systems. On the one hand, unmodified guests are 
not aware they run in a virtual machine, and they expect to 
control the IDT exactly as they do on bare metal. On the other 
hand, the host cannot easily give untrusted and unmodified 
guests control of each core’s IDT. This is because having 
full control over the physical IDT implies total control of 
the core. Therefore, x86 hardware virtualization extensions 
use a different IDT for each mode. Guest mode execution 
on each core is controlled by the guest IDT and host mode 
execution is controlled by the host IDT. An I/O device can 
raise a physical interrupt when the CPU is executing either 
in host mode or in guest mode. If the interrupt arrives while 
the CPU is in guest mode, the CPU forces an exit and delivers 
the interrupt to the host through the host IDT.

Guests receive virtual interrupts, which are not neces-
sarily related to physical interrupts. The host may decide 
to inject the guest with a virtual interrupt because the host 
received a corresponding physical interrupt, or the host 
may decide to inject the guest with a virtual interrupt man-
ufactured by the host. The host injects virtual interrupts 
through the guest IDT. When the processor enters guest 
mode after an injection, the guest receives and handles the 
virtual interrupt.

During interrupt handling, the guest will access its LAPIC. 
Just like the IDT, full access to a core’s physical LAPIC implies 
total control of the core, so the host cannot easily give 
untrusted guests access to the physical LAPIC. For guests 
using the first LAPIC generation, the processor forces an exit 
when the guest accesses the LAPIC memory area. For guests 
using x2APIC, the host traps LAPIC accesses according to an 
MSR bitmap, which specifies the sensitive MSRs that cannot 
be accessed directly by the guest. When the guest accesses 
sensitive MSRs, execution exits back to the host. In general, 
x2APIC registers are considered sensitive MSRs.

3.3. Interrupts from assigned devices
The key to virtualization performance is for the CPU to spend 
most of its time in guest mode, running the guest, and not 
in the host, handling guest exits. I/O device emulation and 
paravirtualized drivers5 incur significant overhead for I/O 
intensive workloads running in guests.6, 16 The overhead is 
incurred by the host’s involvement in its guests’ I/O paths for 
programmed I/O (PIO), memory-mapped I/O (MMIO), direct 
memory access (DMA), and interrupts.
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MMU,1, 5 IDT shadowing can be used to virtualize interrupt 
delivery. This mechanism, which is depicted in Figure 2 and 
described below, requires no guest cooperation.

By shadowing the guest’s IDT, the host has explicit con-
trol over the interrupt handlers invoked by the CPU on 
interrupt delivery. The host can configure the shadow IDT 
to deliver assigned interrupts directly to the guest’s inter-
rupt handler or force an exit for nonassigned interrupts. 
The simplest method to cause an exit is to force the CPU to 
generate an exception, because exceptions can be selectively 
trapped by the host and can be easily generated if the host 
intentionally misconfigures the shadow IDT. For our imple-
mentation, we decided to force exits primarily by generating 
not-present (NP) exceptions. Each IDT entry has a present 
bit. Before invoking an entry to deliver an interrupt, the proces-
sor checks whether that entry is present (has the present bit 
set). Interrupts delivered to NP entries raise a NP exception. 
ELI configures the shadow IDT as follows: for exceptions 
and physical interrupts belonging to devices assigned to the 
guest, the shadow IDT entries are copied from the guest’s 
original IDT and marked as present. Every other entry in the 
shadow IDT should be handled by the host and is therefore 
marked as not present to force a NP exception when the proces-
sor tries to invoke the handler. Additionally, the host config-
ures the processor to force an exit from guest mode to host 
mode whenever a NP exception occurs.

Any physical interrupt reflected to the host appears in the 
host as a NP exception and must be converted back to the 
original interrupt vector. The host inspects the cause for this 
exception. If the exit was actually caused by a physical inter-
rupt, the host raises a software interrupt with the same vec-
tor as the physical interrupt, which causes the processor to 
invoke the appropriate IDT entry. If the exit was not caused 
by a physical interrupt, then it is a true guest NP exception 
and should be handled by the guest. In this case, the host 
injects the exception back into the guest. True NP excep-
tions are rare in normal execution.

The host sometimes also needs to inject into the guest 
virtual interrupts raised by devices that are emulated 
by the host (e.g., the keyboard). These interrupt vectors 
will have their entries in the shadow IDT marked NP. To 
deliver such virtual interrupts through the guest IDT han-
dler, ELI enters a special injection mode by configuring the 

Direct device assignment is the best performing 
approach for I/O virtualization9, 16 because it removes some 
of the host’s involvement in the I/O path. With device assign-
ment, guests are granted direct access to assigned devices. 
Guest I/O operations bypass the host and are communi-
cated directly to devices. As noted, device DMA also bypasses 
the host; devices perform DMA accesses to and from guest 
memory directly. Interrupts generated by assigned devices, 
however, still require host intervention.

In theory, when the host assigns a device to a guest, it 
should also assign the physical interrupts generated by the 
device to that guest. Unfortunately, current x86 virtualiza-
tion only supports two modes: either all physical interrupts 
on a core are delivered to the currently running guest, or 
all physical interrupts in guest mode cause an exit and are 
delivered to the host. An untrusted guest may handle its own 
interrupts, but it must not be allowed to handle the inter-
rupts of the host and the other guests. Consequently, before 
ELI, the host had no choice but to configure the processor 
to force an exit when any physical interrupt arrives in guest 
mode. The host then inspected the interrupt and decided 
whether to handle it by itself or inject it to the associated 
guest.

Figure 1 describes the interrupt handling flow with base-
line device assignment. Each physical interrupt from the 
guest’s assigned device forces at least two exits from guest to 
host: when the interrupt arrives and when the guest signals 
completion of the interrupt handling. As we show in Section 5, 
interrupt-related exits are the foremost contributors to vir-
tualization overhead for I/O intensive workloads.

4. ELI: DESIGN AND IMPLEMENTATION
ELI enables unmodified and untrusted guests to handle inter-
rupts directly and securely. ELI does not require any guest 
modifications, and thus should work with any operating sys-
tem. It does not rely on any device-specific features, and thus 
should work with any assigned device.

4.1. Exitless interrupt delivery
ELI’s design was guided by the observation that nearly all 
 physical interrupts arriving at a given core are targeted at the 
guest running on that core. This is due to several reasons. 
First, in high-performance deployments, guests usually have 
their own physical CPU cores (or else they would waste too 
much time context switching); second, high-performance 
deployments use device assignment with SR-IOV devices; 
and third, interrupt rates are usually proportional to execu-
tion time. The longer each guest runs, the more interrupts 
it receives from its assigned devices. Following this observa-
tion, ELI makes use of available hardware support to deliver 
all physical interrupts on a given core to the guest running on 
it, since most of them should be handled by that guest any-
way, and forces the (unmodified) guest to reflect back to the 
host all those interrupts which should be handled by the host.

The guest OS continues to prepare and maintain its own 
IDT. Instead of running the guest with this IDT, ELI runs 
the guest in guest mode with a different IDT prepared by 
the host. We call this second guest IDT the shadow IDT. Just 
like shadow page tables can be used to virtualize the guest 
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Figure 2. ELI interrupt delivery flow.
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processor to cause an exit on any physical interrupt and 
running the guest with the original guest IDT. ELI then 
injects the virtual interrupt into the guest for handling, 
similarly to how it is usually done (Figure 1). After the 
guest signals completion of the injected virtual interrupt, 
ELI leaves injection mode by reconfiguring the processor 
to let the guest handle physical interrupts directly and 
resuming the guest with the shadow IDT. As we later show 
in Section 5, the number of injected virtual interrupts is 
orders of magnitude smaller than the number of physi-
cal interrupts generated by the assigned device. Thus, the 
number of exits due to physical interrupts while running 
in injection mode is negligible.

Even when all the interrupts require exits, ELI is not 
slower than baseline device assignment. The number of 
exits never increases and cost per exit remains the same. 
Common OS rarely modify the IDT content after system ini-
tialization. Entering and leaving injection mode requires 
only two memory writes, one to change the IDT pointer and 
the other to change the CPU execution mode.

4.2. Placing the shadow IDT
There are several requirements on where in guest mem-
ory to place the shadow IDT. First, it should be hidden 
from the guest, that is, placed in memory not normally 
accessed by the guest. Second, it must be placed in a 
guest physical page that is always mapped in the guest’s 
kernel address space. This is an x86 architectural 
requirement, since the IDTR expects a virtual address. 
Third, since the guest is unmodified and untrusted, the 
host cannot rely on any guest cooperation for placing 
the shadow IDT. ELI satisfies all three requirements by 
placing the shadow IDT in an extra page of a device’s PCI 
Base Address Register (BAR).

PCI devices which expose their registers to system soft-
ware as memory do so through BAR registers. BARs spec-
ify the location and sizes of device registers in physical 
memory. Linux and Windows drivers will map the full size 
of their devices’ PCI BARs into the kernel’s address space, 
but they will only access specific locations in the mapped 
BAR that are known to correspond to device registers. 
Placing the shadow IDT in an additional memory page 
tacked onto the end of a device’s BAR causes the guest 
to (1) map it into its address space, (2) keep it mapped, 
and (3) not access it during normal operation. All of this 
happens as part of normal guest operation and does not 
require any guest awareness or cooperation. To detect 
runtime changes to the guest IDT, the host also write-pro-
tects the shadow IDT page.

4.3. Configuring guest and host vectors
Neither the host nor the guest have absolute control over 
precisely when an assigned device interrupt fires. Since 
the host and the guest may run at different times on the 
core receiving the interrupt, both must be ready to han-
dle the same interrupt. (The host handles the interrupt 
by injecting it into the guest.) Interrupt vectors also con-
trol that interrupt’s priority relatively to other interrupts. 
Therefore, ELI makes sure that for each device interrupt, 

the respective guest and host interrupt handlers are 
assigned to the same vector.

4.4. Exitless interrupt completion
Although ELI IDT shadowing delivers hardware interrupts 
to the guest without host intervention, signaling interrupt 
completion still forces an exit to host mode. This exit is caused 
by the guest signaling the completion of an interrupt. As 
explained in Section 3.2, guests signal completion by writ-
ing to the EOI LAPIC register. This register is exposed to the 
guest either as part of the LAPIC area (older LAPIC interface) 
or as an x2APIC MSR (the new LAPIC interface). With the old 
interface, every LAPIC access causes an exit, whereas with 
the new one, the host can decide on a per-x2APIC-register 
basis which register accesses cause exits.

Before ELI, the host configured the CPU’s MSR bitmap 
to force an exit when the guest accessed the EOI MSR. ELI 
exposes the x2APIC EOI register directly to the guest by con-
figuring the MSR bitmap to not cause an exit when the guest 
writes to the EOI register. Combining this interrupt comple-
tion technique with ELI IDT shadowing eliminates the exits 
on the critical interrupt handling path.

Guests are not aware of the distinction between physical 
and virtual interrupts. They signal the completion of all inter-
rupts the same way, by writing the EOI register. When the 
host injects a virtual interrupt, the corresponding comple-
tion should go to the host for emulation and not to the physi-
cal EOI register. Thus, during injection mode (described in 
Section 4.1), the host temporarily traps accesses to the EOI 
register. Once the guest signals the completion of all pend-
ing virtual interrupts, the host leaves injection mode.

4.5. Protection
Full details of the considered threat model are available in 
the full paper. Here we briefly describe possible attacks and 
the mechanisms ELI employs to prevent them.

A malicious guest may try to steal CPU time by disabling 
interrupts forever. To prevent such an attack, ELI uses the 
preemption timer feature of x86, which triggers an uncondi-
tional exit after a configurable period of time elapses.

A misbehaving guest may refrain from signaling interrupt 
completion and thereby mask host interrupts. To prevent it, 
ELI signals interrupt completion for any assigned interrupt 
still in service after an exit. To maintain correctness, when 
ELI detects that the guest did not complete any previously 
delivered interrupts, it falls back to injection mode until the 
guest signals completions of all in-service interrupts. Since all 
of the registers that control CPU interruptibility are reloaded 
upon exit, the guest cannot affect host interruptibility.

A malicious guest can try to block or consume critical 
physical interrupts, such as a thermal interrupt. To protect 
against such an attack, ELI uses one of the following mecha-
nisms. If there is a core which does not run any ELI-enabled 
guests, ELI redirects critical interrupts there. If no such 
core is available, ELI uses a combination of Non-maskable-
Interrupts (NMIs) and IDT limiting.

NMIs trigger unconditional exits; they cannot be blocked 
by guests. ELI redirects critical interrupts to the core’s single 
NMI handler. All critical interrupts are registered with this 
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Recall that ELI makes use of the x2APIC hardware to 
avoid exits on interrupt completions. x2APIC is available 
in every Intel x86 CPU since Sandy Bridge microarchitec-
ture. Alas, the hardware we used for evaluation does not 
support x2APIC. To nevertheless measure the benefits 
of ELI utilizing x2APIC hardware, we slightly modify our 
Linux guest to emulate the x2APIC behavior. Specifically, 
we expose the physical LAPIC and a control flag to the 
guest, such that the guest may perform an EOI on the vir-
tual LAPIC (forcing an exit) or the physical LAPIC (no exit), 
according to the flag. We verified that our approach con-
forms to the published specifications.

5.2. Throughput
I/O virtualization performance suffers the most with 
workloads that are I/O intensive and which incur many 
interrupts. We start our evaluation by measuring three 
well-known examples of network-intensive workloads, 
and show that for these benchmarks ELI provides a signif-
icant (49–66%) throughput increase over baseline device 
assignment, and that it nearly (to 0–3%) reaches bare-
metal performance.

We consider the following three benchmarks: Netperf 
TCP stream, which opens a single TCP connection to the 
remote machine, and makes as many rapid write() calls 
of a given size as possible; Apache HTTP server, measured 
using remote ApacheBench which repeatedly requests a static 
page from several concurrent threads; and Memcached, a 
high-performance in-memory key-value storage server, mea-
sured using the Memslap benchmark which sends a random 
sequence of get (90%) and set (10%) requests.

We configure each benchmark with parameters that fully 
load the tested machine’s core (so that throughput can be 
compared), but do not saturate the tester machine. We con-
figure Netperf to do 256-byte writes, ApacheBench to request 
4KB static pages from 4 concurrent threads, and Memslap to 
make 64 concurrent requests from 4 threads.

Figure 3 illustrates how ELI improves the throughput of 
these three benchmarks. Each of the benchmarks was run 
on bare metal and under two virtualized setups: baseline 
device assignment, and device assignment with ELI.

handler, and whenever an NMI occurs, the handler calls all 
registered interrupt vectors to discern which critical inter-
rupt occurred. NMI sharing has a negligible run-time cost 
(since critical interrupts rarely happen). However, some 
devices and device drivers may lock up or otherwise misbe-
have if their interrupt handlers are called when no interrupt 
was raised.

For critical interrupts whose handlers must only be called 
when an interrupt actually occurred, ELI uses a complemen-
tary coarse grained IDT limit mechanism. The IDT limit is 
specified in the IDTR register, which is protected by ELI and 
cannot be changed by the guest. IDT limiting reduces the 
limit of the shadow IDT, causing all interrupts whose vector 
is above the limit to trigger the usually rare general protec-
tion exception (GP). A GP is intercepted and handled by the 
host similarly to the NP exception. No events take precedence 
over the IDTR limit check,11 and all handlers above the limit 
are therefore guaranteed to trap to the host when called.

5. EVALUATION
We implement ELI within the KVM hypervisor. This section 
evaluates the performance of our implementation.

5.1. Methodology and experimental setup
We measure and analyze ELI’s effect on high-throughput 
network cards assigned to a guest virtual machine. Network 
devices are the most common use-case of device assignment, 
due to their high throughput and because SR-IOV network 
cards make it easy to assign one physical network card to 
multiple guests. We use throughput and latency to mea-
sure performance, and we contrast the results achieved by 
virtualized and bare-metal settings to demonstrate that the 
former can approach the latter. As noted earlier, perfor-
mance-minded applications would typically dedicate whole 
cores to guests. We limit our evaluation to this case.

Our test machine is an IBM System x3550 M2 server, 
equipped with Intel Xeon X5570 CPUs, 24GB of memory, and 
an Emulex OneConnect 10Gbps NIC. We use another similar 
remote server (connected directly by 10Gbps fiber) as a work-
load generator and a target for I/O transactions. Guest mode 
and bare-metal configurations execute with a single core; 
1GB of memory is assigned for each. All setups run Ubuntu 
9.10 with Linux 2.6.35.

We run all guests on the KVM hypervisor (which is part 
of Linux 2.6.35) and QEMU-KVM 0.14.0. To check that ELI 
functions correctly in other setups, we also deploy it in an 
environment that uses a different device (BCM5709 1Gbps 
NIC) and a different OS (Windows 7); we find that ELI indeed 
operates correctly. We evaluate and compare the performance 
using baseline device assignment (i.e., unmodified KVM), 
ELI, and bare-metal system without virtualization.

We configure the hypervisor to back the guest’s memory 
with 2MB huge pages and two-dimensional page tables. 
Huge pages minimize two-dimensional paging overhead 
and reduce TLB pressure. We note that only the host uses 
huge pages; in all cases the guest still operates with the 
default 4KB page size. We quantify the performance without 
huge pages, finding that they improve performance of both 
baseline and ELI runs similarly (data not shown).
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Figure 3. Performance of I/O intensive workloads relatively to 
bare-metal.
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The figure shows that baseline device assignment perfor-
mance is still considerably below bare-metal performance: 
Netperf throughput on a guest is at 60% of bare-metal 
throughput, Apache is at 65%, and Memcached at 60%. 
With ELI, Netperf achieves 98% of the bare-metal throughput, 
Apache 97%, and Memcached 100%. It is evident that using 
ELI gives a significant throughput increase, 63%, 49%, and 
66% for Netperf, Apache, and Memcached, respectively.

5.3. Execution breakdown
Breaking down the execution time to host, guest, and over-
head components allows us to better understand how and 
why ELI improves the guest’s performance. Table 1 shows 
this breakdown for the Apache benchmark (Netperf and 
Memcached appear in the full paper). We summarize here 
the results of the three benchmarks.

Guest performance should be better with ELI because the 
guest gets a larger fraction of the CPU (the host uses less), 
and/or because the guest runs more efficiently when it gets 
to run. With baseline device assignment, only 60–69% of the 
CPU time is spent in the guest; the rest is spent in the host, 
handling exits. ELI eliminates most of the exits, and thereby 
reduces both the fraction of time spent in the host (down to 
1–2%) and the number of exits (down to 764–1118 per second).

In baseline device assignment, all interrupts arrive at the 
host and are then injected to the guest. The injection rate 
is slightly higher than the interrupt rate because the host 
injects additional virtual interrupts, such as timer inter-
rupts. The number of interrupts “handled in host” is very 
low (103–207) when ELI is used, because the fraction of the 
time that the CPU is running the host is much lower.

Baseline device assignment is further slowed down by 
“IRQ window” exits: on bare metal, when a device interrupt 
occurs while interrupts are blocked, the interrupt will be 
delivered by the LAPIC hardware some time later. But when 
a guest is running, an interrupt always causes an immediate 
exit. The host wishes to inject this interrupt to the guest (if it 
is an interrupt from the assigned device), but if the guest has 
interrupts blocked, it cannot. The x86 architecture solution 
is to run the guest with an “IRQ window” enabled, requesting 
an exit as soon as the guest enables interrupts. We see 7801–
9069 of these exits every second in the baseline device assign-
ment run. ELI mostly eliminates IRQ window overhead, by 
eliminating most injections. Consequently, as expected, ELI 
slashes the number of exits, from 90,506 to 123,134 in the 
baseline device assignment runs, to just 764–1118.

5.4. Impact of interrupt rate
The benchmarks in the previous section demonstrated that 
ELI significantly improves throughput over baseline device 
assignment for I/O intensive workloads. But as the workload 
spends less of its time on I/O and more of its time on com-
putation, it seems likely that ELI’s improvement will be less 
pronounced. Nonetheless, counterintuitively, we shall now 
show that ELI continues to provide relatively large improve-
ments until we reach some fairly high computation-per-I/O 
ratio (and some fairly low throughput). To this end, we mod-
ify the Netperf benchmark to perform a specified amount 
of extra computation per byte written to the stream. This 
resembles many useful server workloads, where the server 
does some computation before sending its response.

A useful measure of the ratio of computation to I/O is 
cycles/byte, the number of CPU cycles spent to produce 
one byte of output; this ratio is easily measured as the 
quotient of CPU frequency (in cycles/second) and work-
load throughput (in bytes/second). Note that cycles/byte is 
inversely proportional to throughput. Figure 4 depicts ELI’s 
improvement and the interrupt rate as a function of this 
ratio. As shown, until after 60 cycles/byte—which corre-
sponds to throughput of only 50Mbps-ELI’s improvement 
stays over 25% and the interrupt rate remains between 30K 
and 60K. As will be shown below, interrupt rates are kept 
in this range due to the NIC (which coalesces interrupts) 
and the Linux driver (which employs NAPI), and they would 
have been higher if it were not for these mechanisms. Since 
ELI lowers the overhead of handling interrupts, its benefit 
is proportional to their rate, not to throughput, a fact that 
explains why the improvement is similar over a range of 
computation-I/O values.

We now proceed to investigate the dependence of ELI’s 
improvement on the amount of coalescing done by the NIC, 
which immediately translates to the amount of generated 
interrupts. Our NIC imposes a configurable cap on coalesc-
ing, allowing its users to set a time duration T, such that the 
NIC will not fire more than one interrupt per T µs (longer 
T implies less interrupts). We set the NIC’s coalescing cap 
to the following values: 16 µs, 24 µs, 32 µs, . . ., 96 µs. Figure 5 
plots the results of the associated experiments (the data 
along the curve denotes values of T). Higher interrupt rates 

Statistics Baseline ELI Bare-metal

Exits/s 90,506 1118
Time in guest 67% 98%
Interrupts/s 36,418 66,546 68,851
Handled in host 36,418 195
Injections/s 36,671 458
IRQ windows/s 7801 192  

Requests/s 7729 11,480 11,875
Avg response ms 0.518 0.348 0.337

Table 1. Apache benchmark execution breakdown.

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300
0K

10K

20K

30K

40K

50K

60K

70K

EL
I’

s 
th

ro
ug

hp
ut

 im
pr

ov
em

en
t

In
te

rr
up

ts
/s

ec
on

d

Computation-I/O ratio (cycles/byte)

Improvement
Interrupts

Figure 4. Throughput improvement and baseline interrupt rate of 
modified-Netperf workloads with various computation-I/O ratios.



 

JANUARY 2016  |   VOL.  59  |   NO.  1   |   COMMUNICATIONS OF THE ACM     115

imply higher savings due to ELI. Even with the maximal 
coalescing ELI still provides a 10% performance improvement 
over the baseline. ELI achieves at least 99% of bare-metal 
throughput in all of the experiments described in this sec-
tion. These results indicate that when ELI is used, coalescing 
has lesser effect on throughput. The granularity of coalesc-
ing can therefore be made finer, so as to refrain from the 
increased latency that coarse coalescing induces.

5.5. Latency
By removing the exits caused by external interrupts, ELI 
substantially reduces the time it takes to deliver interrupts 
to the guest. This period of time is critical for latency- 
sensitive workloads. We measure ELI’s latency improve-
ment using Netperf UDP request-response, which sends a 
UDP packet and waits for a reply before sending the next. 
To simulate a busy guest that has work to do alongside a 
latency-sensitive application, we run a busy-loop within 
the guest. As the results in Table 2 show, baseline device 
assignment increases bare metal latency by 8.21 µs and 
that ELI reduces this gap to only 0.58 µs, which is within 
98% of bare-metal latency.

6. AFTERMATH
In our original ASPLOS 2012 paper, we urged hardware ven-
dors to add hardware support that would simplify implement-
ing direct interrupt delivery to guest virtual machines. We 
made the case that the substantial performance improvement 
demonstrated by ELI merits the effort to add such support. We 
are happy to report that, since then, a few positive steps has 
been taken in this direction.

To mitigate some of the overheads caused by interrupts 
delivery, hypervisors can now use the Intel “virtual APIC” 
(APICv) feature. Assume that a guest currently runs on core C1. 
The hypervisor can arrange things such that the relevant 
(physical) interrupts are triggered on a different core C2 that 
runs in host mode. When an interrupt reaches C2, APICv 
then allows the hypervisor to “forward” the corresponding 
(virtual) interrupts to C1 to the guest without inducing an 
exit. Although such a scheme eliminates unwarranted exits 
for the guest, it is inferior to ELI due to two reasons. First, it 
requires dedicating special host cores (like C2) for redirect-
ing guest interrupts. Second, it increases interrupts delivery 
latency, as they must first be processed by the hypervisor at 
C2 and only then can they be delivered to the guest at C1.

Both Intel and AMD indicate that they intend to sup-
port direct ELI-like delivery in hardware.12 Some ARM chips 
already support such delivery.4 It is still unclear, however, 
whether this hardware support would live up to its promise. 
The first generation of Intel implementation, for instance, 
would deliver each guest interrupt to a certain core. As a 
result, this implementation may not be usable for multi-core 
guests whose OS spreads interrupts across the guest cores.

7. CONCLUSION
The key to high virtualization performance is for the CPU to 
spend most of its time in guest mode, running the guest, and 
not in the host, handling guest exits. Yet current approaches 
to x86 virtualization induce multiple exits by requiring host 
involvement in the critical interrupt handling path. The result 
is that I/O performance suffers. We propose to eliminate the 
unwarranted exits by introducing ELI, an approach that lets 
guests handle interrupts directly and securely. Building on 
many previous efforts to reduce virtualization overhead, ELI 
finally makes it possible for untrusted and unmodified vir-
tual machines to reach nearly bare-metal performance, even 
for the most I/O-intensive workloads. Considering, it seems 
that the next logical step for chip vendors is extend the posted 
interrupts architecture so as to support the ELI paradigm in 
hardware, thereby simplifying its implementation.

Acknowledgments
The research leading to the results presented in this paper is 
partially supported by the European Community’s Seventh 
Framework Programme ([FP7/2001–2013]) under grant 
agreements #248615 (IOLanes) and #248647 (ENCORE). 

Table 2. Latency measured by Netperf UDP request-response  
benchmark.

Configuration Latency (ms) % Overhead

Baseline 36.14 29
ELI 28.51 2
Bare-metal 27.93 0
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