
108 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

Bare-Metal Performance
for Virtual Machines
with Exitless Interrupts
By Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf Schuster, and Dan Tsafrir

Abstract
Direct device assignment enhances the performance of guest
virtual machines by allowing them to communicate with
I/O devices without host involvement. But even with device
assignment, guests are still unable to approach bare-metal
performance, because the host intercepts all interrupts,
including those generated by assigned devices to signal
to guests the completion of their I/O requests. The host
involvement induces multiple unwarranted guest/host con-
text switches, which significantly hamper the performance
of I/O intensive workloads. To solve this problem, we pres-
ent ExitLess Interrupts (ELI), a software-only approach for
handling interrupts within guest virtual machines directly
and securely. By removing the host from the interrupt han-
dling path, ELI improves the throughput and latency of
unmodified, untrusted guests by 1.3×–1.6×, allowing them
to reach 97–100% of bare-metal performance even for the
most demanding I/O-intensive workloads.

1. INTRODUCTION
I/O activity is a dominant factor in the performance of virtu-
alized environments,17, 25 motivating direct device assignment
where the host assigns physical I/O devices directly to guest
virtual machines. Examples of such devices include disk
controllers, network cards, and GPUs. Direct device assign-
ment provides superior performance than alternative I/O vir-
tualization approaches, because it almost entirely removes
the host from the guest’s I/O path. Without direct device
assignment, I/O-intensive workloads might suffer unaccept-
able performance degradation.17, 19, 25 Still, on x86 CPUs (the
most popular platform for virtualization), direct assignment
alone does not allow I/O-intensive workloads to approach
bare-metal (nonvirtual) performance6, 9, 16, 25; by our measure-
ments, such workloads achieve only 60–65% of bare-metal
performance. We find that nearly the entire performance dif-
ference is induced by interrupts of assigned devices.

I/O devices generate interrupts to notify the CPU of I/O
operations’ completion. In virtualized settings, each device
interrupt triggers a costly exit,1, 6 causing the guest to be sus-
pended and the host to be resumed, regardless of whether or
not the device is assigned. The host first signals to the hard-
ware the completion of the physical interrupt as mandated
by the x86 specification. It then injects a corresponding (vir-
tual) interrupt to the guest and resumes the guest’s execu-
tion. The guest in turn handles the virtual interrupt and,
like the host, signals completion, believing that it directly

interacts with the hardware. This action triggers yet another
exit, prompting the host to emulate the completion of the
virtual interrupt and to resume the guest again. The chain of
events for handling interrupts is illustrated in Figure 1.

The guest/host context switches caused by interrupts induce
a tolerable overhead for non-I/O-intensive workloads, a fact
that allowed some previous virtualization studies to claim
they achieved bare-metal performance.5, 14 But our measure-
ments indicate that this overhead quickly ceases to be tol-
erable, adversely affecting guests that require throughput
of as little as 50 Mbps. Notably, previous studies improved
virtual I/O by relaxing protection13, 14 or by modifying guests,5
whereas we focus on the most challenging virtualization sce-
nario of untrusted and unmodified guests.

Many previous studies identified interrupts as a major
source of overhead,6, 15 and many proposed techniques to
reduce it, both in bare-metal settings10, 21, 23, 26 and in virtual-
ized settings3, 9, 16, 25. In principle, it is possible to tune devices
and their drivers to generate fewer interrupts, thereby
reducing the related overhead. But doing so in practice is
far from trivial22 and can adversely affect both latency and
throughput.

Our approach rests on the observation that the high inter-
rupt rates experienced by a core running an I/O-intensive
guest are mostly generated by devices assigned to the guest.
Indeed, we measure rates of over 150K physical interrupts
per second, even while employing standard techniques to
reduce the number of interrupts, such as interrupt coalesc-
ing3, 21, 26 and hybrid polling.10, 23 As noted, the resulting guest/
host context switches are nearly exclusively responsible for
the inferior performance relative to bare metal. To eliminate
these switches, we propose ExitLess Interrupts (ELI), a soft-
ware-only approach for handling physical interrupts directly
within the guest in a secure manner.

A full version of this paper is available in Proceedings of
ACM Architectural Support for Programming Languages
(ASPLOS) 2012.

Physical
interrupt

Interrupt
injection

Interrupt
completion

Guest

Host

Figure 1. Exits during interrupt handling.

DOI:10.1145/2845648

http://doi.acm.org/10.1145/2845648

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 109

With ELI, physical interrupts are delivered directly to
guests, allowing them to process their devices’ interrupts
without host involvement; ELI makes sure that each guest
forwards all other interrupts to the host. With x86 hardware,
interrupts are delivered using a software-controlled table of
pointers to functions, such that the hardware invokes the
kth function whenever an interrupt of type k fires. Instead of
utilizing the guest’s table, ELI maintains, manipulates, and
protects a “shadow table,” such that entries associated with
assigned devices point to the guest’s code, whereas the other
entries are set to trigger an exit to the host.

We experimentally evaluate ELI with micro- and macro-
benchmarks. Our baseline configuration employs standard
techniques to reduce (coalesce) the number of interrupts,
demonstrating ELI’s benefit beyond the state-of-the-art. We
show that ELI reduces CPU overheads that limit the attain-
able throughput, and thereby it improves the throughput
and latency of guests by 1.3×–1.6×. Notably, whereas I/O-
intensive guests were so far limited to 60–65% of bare-metal
throughput, with ELI they reach performance that is within
97–100% of the optimum. Consequently, ELI makes it pos-
sible to, for example, consolidate traditional data-center
workloads that nowadays remain nonvirtualized due to
unacceptable performance loss.

2. MOTIVATION AND RELATED WORK
For the past several decades, interrupts have been the main
method by which hardware devices can send asynchronous
events to the operating system.7 The main advantage of
using interrupts to receive notifications from devices over
polling them is that the processor is free to perform other
tasks while waiting for an interrupt. This advantage applies
when interrupts happen relatively infrequently, as was the
case until high performance storage and network adapters
came into existence. With these devices, the CPU can be
overwhelmed with interrupts, leaving no time to execute
code other than the interrupt handler.18 When the operating
system is run in a guest, interrupts have a higher cost, since
every interrupt causes multiple exits.1, 6 ELI eliminates most
of these exits and their associated overhead.

In the remainder of this section we introduce the existing
approaches to reduce the overheads induced by interrupts,
and we highlight the novelty of ELI in comparison to these
approaches. We subdivide the approaches into two categories.

2.1. Generic interrupt handling approaches
We now survey approaches that apply equally to bare metal
and virtualized environments.

Polling disables interrupts entirely and polls the device
for new events at regular intervals. The benefit is that han-
dling device events becomes synchronous, allowing the
operating system to decide when to poll and thus limit the
number of handler invocations. The drawbacks are added
latency, increased power consumption (since the proces-
sor cannot enter an idle state), and wasted cycles when no
events are pending. If polling is done on a different core,
latency is improved, but a core is wasted.

A hybrid approach for reducing interrupt-handling over-
head is to switch dynamically between using interrupts and

polling.10, 18 Linux uses this approach by default through the
NAPI mechanism.23 Switching between interrupts and poll-
ing does not always work well in practice, partly due to the
complexity of predicting the number of interrupts a device
will issue in the future.

Another approach is interrupt coalescing,3, 21, 26 in which
the OS programs the device to send one interrupt in a time
interval or one interrupt per several events, as opposed to
one interrupt per event. As with the hybrid approaches,
coalescing delays interrupts and hence might increase
latency15 and burst TCP traffic.26 Deciding on the right
model and parameters for coalescing is particularly com-
plex when the workload runs within a guest.9 Getting it
right for a wide variety of workloads is hard if not impossi-
ble.3, 22 Unlike coalescing, ELI does not reduce the number
of interrupts; instead it streamlines the handling of inter-
rupts targeted at virtual machines. Coalescing and ELI are
therefore complementary, as we show in Section 5.4: coalesc-
ing reduces the number of interrupts, and ELI reduces
their cost.

All evaluations in Section 5 were performed with the
default Linux configuration, which combines the hybrid
approach (via NAPI) and coalescing.

2.2. Virtualization-specific approaches
Using an emulated or paravirtual5 device provides much flex-
ibility on the host side, but its performance is much lower
than that of device assignment, not to mention bare metal.
Liu16 shows that device assignment of SR-IOV devices can
achieve throughput close to bare metal at the cost of as much
as 2× higher CPU utilization. He also demonstrates that inter-
rupts have a great impact on performance and are a major
expense for both the transmit and receive paths.

There are software techniques2 to reduce the number of
exits by finding blocks of exiting instructions and exiting only
once for the whole block. These techniques can increase the
efficiency of running a virtual machine when the main rea-
son for the overhead is in the guest code. When the reason
is in external interrupts, such as for I/O intensive workloads
with SR-IOV, such techniques do not alleviate the overhead.

Dong et al.9 discuss a framework for implementing SR-IOV
support in the Xen hypervisor. Their results show that
SR-IOV can achieve line rate with a 10Gbps network inter-
face controller (NIC). However, the CPU utilization is 148%
of bare metal. In addition, this result is achieved using adap-
tive interrupt coalescing, which increases I/O latency.

Several studies attempted to reduce the aforementioned
extra overhead of interrupts in virtual environments. vIC3
discusses a method for interrupt coalescing in virtual stor-
age devices and shows an improvement of up to 5% in a
macro-benchmark. Their method uses the number of “com-
mands in flight” to decide how many to coalesce. Therefore,
as the authors say, this approach cannot be used for network
devices due to the lack of information on commands (or
packets) in flight. Dong et al.8 use virtual interrupt coalescing
via polling in the guest and receive side scaling to reduce net-
work overhead in a paravirtual environment. Polling has its
drawbacks, as discussed above, and ELI improves the more
performance-oriented device assignment environment.

research highlights

110 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

NoHype13 argues that modern hypervisors are prone to
attacks by their guests. In the NoHype model, the hypervisor
is a thin layer that starts, stops, and performs other admin-
istrative actions on guests, but is not otherwise involved.
Guests use assigned devices and interrupts are delivered
directly to guests. No details of the implementation or per-
formance results are provided. Instead, the authors focus on
describing the security and other benefits of the model.

3. X86 INTERRUPT HANDLING
To put ELI’s design in context, we begin with a short overview
of how interrupt handling works on x86 today.

3.1. Interrupts in bare-metal environments
x86 processors use interrupts and exceptions to notify sys-
tem software about incoming events. Interrupts are asyn-
chronous events generated by external entities such as I/O
devices; exceptions are synchronous events—such as page
faults—caused by the code being executed. In both cases,
the currently executing code is interrupted and execution
jumps to a pre-specified interrupt or exception handler.

x86 operating systems specify handlers for each inter-
rupt and exception using an architected in-memory table,
the Interrupt Descriptor Table (IDT). This table contains
up to 256 entries, each entry containing a pointer to a han-
dler. Each architecturally-defined exception or interrupt has a
numeric identifier—an exception number or interrupt vec-
tor—which is used as an index to the table. The operating
systems can use one IDT for all of the cores or a separate IDT
per core. The operating system notifies the processor where
each core’s IDT is located in memory by writing the IDT’s
virtual memory address into the Interrupt Descriptor Table
Register (IDTR). Since the IDTR holds the virtual (not physi-
cal) address of the IDT, the OS must always keep the corre-
sponding address mapped in the active set of page tables. In
addition to the table’s location in memory, the IDTR holds
the table’s size.

When an external I/O device raises an interrupt, the pro-
cessor reads the current value of the IDTR to find the IDT.
Then, using the interrupt vector as an index to the IDT, the
CPU obtains the virtual address of the corresponding handler
and invokes it. Further interrupts may or may not be blocked
while an interrupt handler runs.

System software needs to perform operations such as
enabling and disabling interrupts, signaling the comple-
tion of interrupt handlers, configuring the timer interrupt,
and sending interprocessor interrupts (IPIs). Software
performs these operations through the Local Advanced
Programmable Interrupt Controller (LAPIC) interface. The
LAPIC has multiple registers used to configure, deliver, and
signal completion of interrupts. Signaling the completion
of interrupts, which is of particular importance to ELI, is
done by writing to the end-of-interrupt (EOI) LAPIC register.
The newest LAPIC interface, x2APIC,11 exposes its registers
using model specific registers (MSRs), which are accessed
through “read MSR” and “write MSR” instructions. Previous
LAPIC interfaces exposed the registers only in a predefined
memory area which is accessed through regular load and
store instructions.

3.2. Interrupts in virtual environments
x86 hardware virtualization11 provides two modes of opera-
tion, guest mode and host mode. The host, running in host
mode, uses guest mode to create new contexts for running
guest virtual machines. Once the processor starts running a
guest, execution continues in guest mode until some sensi-
tive event forces an exit back to host mode. The host handles
any necessary events and then resumes the execution of
the guest, causing an entry into guest mode. These exits and
entries are the primary cause of virtualization overhead,1, 6,

19 which is particularly pronounced in I/O intensive work-
loads.16, 20, 24 It comes from the processor cycles spent switch-
ing between contexts, the time spent in host mode to handle
the exit, and the resulting cache pollution.

This work focuses on running unmodified and untrusted
operating systems. On the one hand, unmodified guests are
not aware they run in a virtual machine, and they expect to
control the IDT exactly as they do on bare metal. On the other
hand, the host cannot easily give untrusted and unmodified
guests control of each core’s IDT. This is because having
full control over the physical IDT implies total control of
the core. Therefore, x86 hardware virtualization extensions
use a different IDT for each mode. Guest mode execution
on each core is controlled by the guest IDT and host mode
execution is controlled by the host IDT. An I/O device can
raise a physical interrupt when the CPU is executing either
in host mode or in guest mode. If the interrupt arrives while
the CPU is in guest mode, the CPU forces an exit and delivers
the interrupt to the host through the host IDT.

Guests receive virtual interrupts, which are not neces-
sarily related to physical interrupts. The host may decide
to inject the guest with a virtual interrupt because the host
received a corresponding physical interrupt, or the host
may decide to inject the guest with a virtual interrupt man-
ufactured by the host. The host injects virtual interrupts
through the guest IDT. When the processor enters guest
mode after an injection, the guest receives and handles the
virtual interrupt.

During interrupt handling, the guest will access its LAPIC.
Just like the IDT, full access to a core’s physical LAPIC implies
total control of the core, so the host cannot easily give
untrusted guests access to the physical LAPIC. For guests
using the first LAPIC generation, the processor forces an exit
when the guest accesses the LAPIC memory area. For guests
using x2APIC, the host traps LAPIC accesses according to an
MSR bitmap, which specifies the sensitive MSRs that cannot
be accessed directly by the guest. When the guest accesses
sensitive MSRs, execution exits back to the host. In general,
x2APIC registers are considered sensitive MSRs.

3.3. Interrupts from assigned devices
The key to virtualization performance is for the CPU to spend
most of its time in guest mode, running the guest, and not
in the host, handling guest exits. I/O device emulation and
paravirtualized drivers5 incur significant overhead for I/O
intensive workloads running in guests.6, 16 The overhead is
incurred by the host’s involvement in its guests’ I/O paths for
programmed I/O (PIO), memory-mapped I/O (MMIO), direct
memory access (DMA), and interrupts.

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 111

MMU,1, 5 IDT shadowing can be used to virtualize interrupt
delivery. This mechanism, which is depicted in Figure 2 and
described below, requires no guest cooperation.

By shadowing the guest’s IDT, the host has explicit con-
trol over the interrupt handlers invoked by the CPU on
interrupt delivery. The host can configure the shadow IDT
to deliver assigned interrupts directly to the guest’s inter-
rupt handler or force an exit for nonassigned interrupts.
The simplest method to cause an exit is to force the CPU to
generate an exception, because exceptions can be selectively
trapped by the host and can be easily generated if the host
intentionally misconfigures the shadow IDT. For our imple-
mentation, we decided to force exits primarily by generating
not-present (NP) exceptions. Each IDT entry has a present
bit. Before invoking an entry to deliver an interrupt, the proces-
sor checks whether that entry is present (has the present bit
set). Interrupts delivered to NP entries raise a NP exception.
ELI configures the shadow IDT as follows: for exceptions
and physical interrupts belonging to devices assigned to the
guest, the shadow IDT entries are copied from the guest’s
original IDT and marked as present. Every other entry in the
shadow IDT should be handled by the host and is therefore
marked as not present to force a NP exception when the proces-
sor tries to invoke the handler. Additionally, the host config-
ures the processor to force an exit from guest mode to host
mode whenever a NP exception occurs.

Any physical interrupt reflected to the host appears in the
host as a NP exception and must be converted back to the
original interrupt vector. The host inspects the cause for this
exception. If the exit was actually caused by a physical inter-
rupt, the host raises a software interrupt with the same vec-
tor as the physical interrupt, which causes the processor to
invoke the appropriate IDT entry. If the exit was not caused
by a physical interrupt, then it is a true guest NP exception
and should be handled by the guest. In this case, the host
injects the exception back into the guest. True NP excep-
tions are rare in normal execution.

The host sometimes also needs to inject into the guest
virtual interrupts raised by devices that are emulated
by the host (e.g., the keyboard). These interrupt vectors
will have their entries in the shadow IDT marked NP. To
deliver such virtual interrupts through the guest IDT han-
dler, ELI enters a special injection mode by configuring the

Direct device assignment is the best performing
approach for I/O virtualization9, 16 because it removes some
of the host’s involvement in the I/O path. With device assign-
ment, guests are granted direct access to assigned devices.
Guest I/O operations bypass the host and are communi-
cated directly to devices. As noted, device DMA also bypasses
the host; devices perform DMA accesses to and from guest
memory directly. Interrupts generated by assigned devices,
however, still require host intervention.

In theory, when the host assigns a device to a guest, it
should also assign the physical interrupts generated by the
device to that guest. Unfortunately, current x86 virtualiza-
tion only supports two modes: either all physical interrupts
on a core are delivered to the currently running guest, or
all physical interrupts in guest mode cause an exit and are
delivered to the host. An untrusted guest may handle its own
interrupts, but it must not be allowed to handle the inter-
rupts of the host and the other guests. Consequently, before
ELI, the host had no choice but to configure the processor
to force an exit when any physical interrupt arrives in guest
mode. The host then inspected the interrupt and decided
whether to handle it by itself or inject it to the associated
guest.

Figure 1 describes the interrupt handling flow with base-
line device assignment. Each physical interrupt from the
guest’s assigned device forces at least two exits from guest to
host: when the interrupt arrives and when the guest signals
completion of the interrupt handling. As we show in Section 5,
interrupt-related exits are the foremost contributors to vir-
tualization overhead for I/O intensive workloads.

4. ELI: DESIGN AND IMPLEMENTATION
ELI enables unmodified and untrusted guests to handle inter-
rupts directly and securely. ELI does not require any guest
modifications, and thus should work with any operating sys-
tem. It does not rely on any device-specific features, and thus
should work with any assigned device.

4.1. Exitless interrupt delivery
ELI’s design was guided by the observation that nearly all
 physical interrupts arriving at a given core are targeted at the
guest running on that core. This is due to several reasons.
First, in high-performance deployments, guests usually have
their own physical CPU cores (or else they would waste too
much time context switching); second, high-performance
deployments use device assignment with SR-IOV devices;
and third, interrupt rates are usually proportional to execu-
tion time. The longer each guest runs, the more interrupts
it receives from its assigned devices. Following this observa-
tion, ELI makes use of available hardware support to deliver
all physical interrupts on a given core to the guest running on
it, since most of them should be handled by that guest any-
way, and forces the (unmodified) guest to reflect back to the
host all those interrupts which should be handled by the host.

The guest OS continues to prepare and maintain its own
IDT. Instead of running the guest with this IDT, ELI runs
the guest in guest mode with a different IDT prepared by
the host. We call this second guest IDT the shadow IDT. Just
like shadow page tables can be used to virtualize the guest

assigned
interrupt

guest
IDT

shadow
IDT

VM

hypervisor

interrupt
handler

Physical
interrupt

Non-
assigned
interrupt
(exit)

Figure 2. ELI interrupt delivery flow.

research highlights

112 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

processor to cause an exit on any physical interrupt and
running the guest with the original guest IDT. ELI then
injects the virtual interrupt into the guest for handling,
similarly to how it is usually done (Figure 1). After the
guest signals completion of the injected virtual interrupt,
ELI leaves injection mode by reconfiguring the processor
to let the guest handle physical interrupts directly and
resuming the guest with the shadow IDT. As we later show
in Section 5, the number of injected virtual interrupts is
orders of magnitude smaller than the number of physi-
cal interrupts generated by the assigned device. Thus, the
number of exits due to physical interrupts while running
in injection mode is negligible.

Even when all the interrupts require exits, ELI is not
slower than baseline device assignment. The number of
exits never increases and cost per exit remains the same.
Common OS rarely modify the IDT content after system ini-
tialization. Entering and leaving injection mode requires
only two memory writes, one to change the IDT pointer and
the other to change the CPU execution mode.

4.2. Placing the shadow IDT
There are several requirements on where in guest mem-
ory to place the shadow IDT. First, it should be hidden
from the guest, that is, placed in memory not normally
accessed by the guest. Second, it must be placed in a
guest physical page that is always mapped in the guest’s
kernel address space. This is an x86 architectural
requirement, since the IDTR expects a virtual address.
Third, since the guest is unmodified and untrusted, the
host cannot rely on any guest cooperation for placing
the shadow IDT. ELI satisfies all three requirements by
placing the shadow IDT in an extra page of a device’s PCI
Base Address Register (BAR).

PCI devices which expose their registers to system soft-
ware as memory do so through BAR registers. BARs spec-
ify the location and sizes of device registers in physical
memory. Linux and Windows drivers will map the full size
of their devices’ PCI BARs into the kernel’s address space,
but they will only access specific locations in the mapped
BAR that are known to correspond to device registers.
Placing the shadow IDT in an additional memory page
tacked onto the end of a device’s BAR causes the guest
to (1) map it into its address space, (2) keep it mapped,
and (3) not access it during normal operation. All of this
happens as part of normal guest operation and does not
require any guest awareness or cooperation. To detect
runtime changes to the guest IDT, the host also write-pro-
tects the shadow IDT page.

4.3. Configuring guest and host vectors
Neither the host nor the guest have absolute control over
precisely when an assigned device interrupt fires. Since
the host and the guest may run at different times on the
core receiving the interrupt, both must be ready to han-
dle the same interrupt. (The host handles the interrupt
by injecting it into the guest.) Interrupt vectors also con-
trol that interrupt’s priority relatively to other interrupts.
Therefore, ELI makes sure that for each device interrupt,

the respective guest and host interrupt handlers are
assigned to the same vector.

4.4. Exitless interrupt completion
Although ELI IDT shadowing delivers hardware interrupts
to the guest without host intervention, signaling interrupt
completion still forces an exit to host mode. This exit is caused
by the guest signaling the completion of an interrupt. As
explained in Section 3.2, guests signal completion by writ-
ing to the EOI LAPIC register. This register is exposed to the
guest either as part of the LAPIC area (older LAPIC interface)
or as an x2APIC MSR (the new LAPIC interface). With the old
interface, every LAPIC access causes an exit, whereas with
the new one, the host can decide on a per-x2APIC-register
basis which register accesses cause exits.

Before ELI, the host configured the CPU’s MSR bitmap
to force an exit when the guest accessed the EOI MSR. ELI
exposes the x2APIC EOI register directly to the guest by con-
figuring the MSR bitmap to not cause an exit when the guest
writes to the EOI register. Combining this interrupt comple-
tion technique with ELI IDT shadowing eliminates the exits
on the critical interrupt handling path.

Guests are not aware of the distinction between physical
and virtual interrupts. They signal the completion of all inter-
rupts the same way, by writing the EOI register. When the
host injects a virtual interrupt, the corresponding comple-
tion should go to the host for emulation and not to the physi-
cal EOI register. Thus, during injection mode (described in
Section 4.1), the host temporarily traps accesses to the EOI
register. Once the guest signals the completion of all pend-
ing virtual interrupts, the host leaves injection mode.

4.5. Protection
Full details of the considered threat model are available in
the full paper. Here we briefly describe possible attacks and
the mechanisms ELI employs to prevent them.

A malicious guest may try to steal CPU time by disabling
interrupts forever. To prevent such an attack, ELI uses the
preemption timer feature of x86, which triggers an uncondi-
tional exit after a configurable period of time elapses.

A misbehaving guest may refrain from signaling interrupt
completion and thereby mask host interrupts. To prevent it,
ELI signals interrupt completion for any assigned interrupt
still in service after an exit. To maintain correctness, when
ELI detects that the guest did not complete any previously
delivered interrupts, it falls back to injection mode until the
guest signals completions of all in-service interrupts. Since all
of the registers that control CPU interruptibility are reloaded
upon exit, the guest cannot affect host interruptibility.

A malicious guest can try to block or consume critical
physical interrupts, such as a thermal interrupt. To protect
against such an attack, ELI uses one of the following mecha-
nisms. If there is a core which does not run any ELI-enabled
guests, ELI redirects critical interrupts there. If no such
core is available, ELI uses a combination of Non-maskable-
Interrupts (NMIs) and IDT limiting.

NMIs trigger unconditional exits; they cannot be blocked
by guests. ELI redirects critical interrupts to the core’s single
NMI handler. All critical interrupts are registered with this

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 113

Recall that ELI makes use of the x2APIC hardware to
avoid exits on interrupt completions. x2APIC is available
in every Intel x86 CPU since Sandy Bridge microarchitec-
ture. Alas, the hardware we used for evaluation does not
support x2APIC. To nevertheless measure the benefits
of ELI utilizing x2APIC hardware, we slightly modify our
Linux guest to emulate the x2APIC behavior. Specifically,
we expose the physical LAPIC and a control flag to the
guest, such that the guest may perform an EOI on the vir-
tual LAPIC (forcing an exit) or the physical LAPIC (no exit),
according to the flag. We verified that our approach con-
forms to the published specifications.

5.2. Throughput
I/O virtualization performance suffers the most with
workloads that are I/O intensive and which incur many
interrupts. We start our evaluation by measuring three
well-known examples of network-intensive workloads,
and show that for these benchmarks ELI provides a signif-
icant (49–66%) throughput increase over baseline device
assignment, and that it nearly (to 0–3%) reaches bare-
metal performance.

We consider the following three benchmarks: Netperf
TCP stream, which opens a single TCP connection to the
remote machine, and makes as many rapid write() calls
of a given size as possible; Apache HTTP server, measured
using remote ApacheBench which repeatedly requests a static
page from several concurrent threads; and Memcached, a
high-performance in-memory key-value storage server, mea-
sured using the Memslap benchmark which sends a random
sequence of get (90%) and set (10%) requests.

We configure each benchmark with parameters that fully
load the tested machine’s core (so that throughput can be
compared), but do not saturate the tester machine. We con-
figure Netperf to do 256-byte writes, ApacheBench to request
4KB static pages from 4 concurrent threads, and Memslap to
make 64 concurrent requests from 4 threads.

Figure 3 illustrates how ELI improves the throughput of
these three benchmarks. Each of the benchmarks was run
on bare metal and under two virtualized setups: baseline
device assignment, and device assignment with ELI.

handler, and whenever an NMI occurs, the handler calls all
registered interrupt vectors to discern which critical inter-
rupt occurred. NMI sharing has a negligible run-time cost
(since critical interrupts rarely happen). However, some
devices and device drivers may lock up or otherwise misbe-
have if their interrupt handlers are called when no interrupt
was raised.

For critical interrupts whose handlers must only be called
when an interrupt actually occurred, ELI uses a complemen-
tary coarse grained IDT limit mechanism. The IDT limit is
specified in the IDTR register, which is protected by ELI and
cannot be changed by the guest. IDT limiting reduces the
limit of the shadow IDT, causing all interrupts whose vector
is above the limit to trigger the usually rare general protec-
tion exception (GP). A GP is intercepted and handled by the
host similarly to the NP exception. No events take precedence
over the IDTR limit check,11 and all handlers above the limit
are therefore guaranteed to trap to the host when called.

5. EVALUATION
We implement ELI within the KVM hypervisor. This section
evaluates the performance of our implementation.

5.1. Methodology and experimental setup
We measure and analyze ELI’s effect on high-throughput
network cards assigned to a guest virtual machine. Network
devices are the most common use-case of device assignment,
due to their high throughput and because SR-IOV network
cards make it easy to assign one physical network card to
multiple guests. We use throughput and latency to mea-
sure performance, and we contrast the results achieved by
virtualized and bare-metal settings to demonstrate that the
former can approach the latter. As noted earlier, perfor-
mance-minded applications would typically dedicate whole
cores to guests. We limit our evaluation to this case.

Our test machine is an IBM System x3550 M2 server,
equipped with Intel Xeon X5570 CPUs, 24GB of memory, and
an Emulex OneConnect 10Gbps NIC. We use another similar
remote server (connected directly by 10Gbps fiber) as a work-
load generator and a target for I/O transactions. Guest mode
and bare-metal configurations execute with a single core;
1GB of memory is assigned for each. All setups run Ubuntu
9.10 with Linux 2.6.35.

We run all guests on the KVM hypervisor (which is part
of Linux 2.6.35) and QEMU-KVM 0.14.0. To check that ELI
functions correctly in other setups, we also deploy it in an
environment that uses a different device (BCM5709 1Gbps
NIC) and a different OS (Windows 7); we find that ELI indeed
operates correctly. We evaluate and compare the performance
using baseline device assignment (i.e., unmodified KVM),
ELI, and bare-metal system without virtualization.

We configure the hypervisor to back the guest’s memory
with 2MB huge pages and two-dimensional page tables.
Huge pages minimize two-dimensional paging overhead
and reduce TLB pressure. We note that only the host uses
huge pages; in all cases the guest still operates with the
default 4KB page size. We quantify the performance without
huge pages, finding that they improve performance of both
baseline and ELI runs similarly (data not shown).

0%

20%

40%

60%

80%

100%

0G

1G

2G

3G

4G

5G

%
 o

f
ba

re
-m

et
al

 t
hr

ou
gh

pu
t

Base
lin

e
ELI

Netperf

63%

0K

2K

4K

6K

8K

10K

Base
lin

e
ELI

Apache

49%

0K

40K

80K

120K

160K

A
bs

ol
ut

e
th

ro
ug

hp
ut

/s
ec

on
d

Base
lin

e
ELI

Memcached

66%

Figure 3. Performance of I/O intensive workloads relatively to
bare-metal.

research highlights

114 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

The figure shows that baseline device assignment perfor-
mance is still considerably below bare-metal performance:
Netperf throughput on a guest is at 60% of bare-metal
throughput, Apache is at 65%, and Memcached at 60%.
With ELI, Netperf achieves 98% of the bare-metal throughput,
Apache 97%, and Memcached 100%. It is evident that using
ELI gives a significant throughput increase, 63%, 49%, and
66% for Netperf, Apache, and Memcached, respectively.

5.3. Execution breakdown
Breaking down the execution time to host, guest, and over-
head components allows us to better understand how and
why ELI improves the guest’s performance. Table 1 shows
this breakdown for the Apache benchmark (Netperf and
Memcached appear in the full paper). We summarize here
the results of the three benchmarks.

Guest performance should be better with ELI because the
guest gets a larger fraction of the CPU (the host uses less),
and/or because the guest runs more efficiently when it gets
to run. With baseline device assignment, only 60–69% of the
CPU time is spent in the guest; the rest is spent in the host,
handling exits. ELI eliminates most of the exits, and thereby
reduces both the fraction of time spent in the host (down to
1–2%) and the number of exits (down to 764–1118 per second).

In baseline device assignment, all interrupts arrive at the
host and are then injected to the guest. The injection rate
is slightly higher than the interrupt rate because the host
injects additional virtual interrupts, such as timer inter-
rupts. The number of interrupts “handled in host” is very
low (103–207) when ELI is used, because the fraction of the
time that the CPU is running the host is much lower.

Baseline device assignment is further slowed down by
“IRQ window” exits: on bare metal, when a device interrupt
occurs while interrupts are blocked, the interrupt will be
delivered by the LAPIC hardware some time later. But when
a guest is running, an interrupt always causes an immediate
exit. The host wishes to inject this interrupt to the guest (if it
is an interrupt from the assigned device), but if the guest has
interrupts blocked, it cannot. The x86 architecture solution
is to run the guest with an “IRQ window” enabled, requesting
an exit as soon as the guest enables interrupts. We see 7801–
9069 of these exits every second in the baseline device assign-
ment run. ELI mostly eliminates IRQ window overhead, by
eliminating most injections. Consequently, as expected, ELI
slashes the number of exits, from 90,506 to 123,134 in the
baseline device assignment runs, to just 764–1118.

5.4. Impact of interrupt rate
The benchmarks in the previous section demonstrated that
ELI significantly improves throughput over baseline device
assignment for I/O intensive workloads. But as the workload
spends less of its time on I/O and more of its time on com-
putation, it seems likely that ELI’s improvement will be less
pronounced. Nonetheless, counterintuitively, we shall now
show that ELI continues to provide relatively large improve-
ments until we reach some fairly high computation-per-I/O
ratio (and some fairly low throughput). To this end, we mod-
ify the Netperf benchmark to perform a specified amount
of extra computation per byte written to the stream. This
resembles many useful server workloads, where the server
does some computation before sending its response.

A useful measure of the ratio of computation to I/O is
cycles/byte, the number of CPU cycles spent to produce
one byte of output; this ratio is easily measured as the
quotient of CPU frequency (in cycles/second) and work-
load throughput (in bytes/second). Note that cycles/byte is
inversely proportional to throughput. Figure 4 depicts ELI’s
improvement and the interrupt rate as a function of this
ratio. As shown, until after 60 cycles/byte—which corre-
sponds to throughput of only 50Mbps-ELI’s improvement
stays over 25% and the interrupt rate remains between 30K
and 60K. As will be shown below, interrupt rates are kept
in this range due to the NIC (which coalesces interrupts)
and the Linux driver (which employs NAPI), and they would
have been higher if it were not for these mechanisms. Since
ELI lowers the overhead of handling interrupts, its benefit
is proportional to their rate, not to throughput, a fact that
explains why the improvement is similar over a range of
computation-I/O values.

We now proceed to investigate the dependence of ELI’s
improvement on the amount of coalescing done by the NIC,
which immediately translates to the amount of generated
interrupts. Our NIC imposes a configurable cap on coalesc-
ing, allowing its users to set a time duration T, such that the
NIC will not fire more than one interrupt per T µs (longer
T implies less interrupts). We set the NIC’s coalescing cap
to the following values: 16 µs, 24 µs, 32 µs, . . ., 96 µs. Figure 5
plots the results of the associated experiments (the data
along the curve denotes values of T). Higher interrupt rates

Statistics Baseline ELI Bare-metal

Exits/s 90,506 1118
Time in guest 67% 98%
Interrupts/s 36,418 66,546 68,851
Handled in host 36,418 195
Injections/s 36,671 458
IRQ windows/s 7801 192

Requests/s 7729 11,480 11,875
Avg response ms 0.518 0.348 0.337

Table 1. Apache benchmark execution breakdown.

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300
0K

10K

20K

30K

40K

50K

60K

70K

EL
I’

s
th

ro
ug

hp
ut

 im
pr

ov
em

en
t

In
te

rr
up

ts
/s

ec
on

d

Computation-I/O ratio (cycles/byte)

Improvement
Interrupts

Figure 4. Throughput improvement and baseline interrupt rate of
modified-Netperf workloads with various computation-I/O ratios.

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 115

imply higher savings due to ELI. Even with the maximal
coalescing ELI still provides a 10% performance improvement
over the baseline. ELI achieves at least 99% of bare-metal
throughput in all of the experiments described in this sec-
tion. These results indicate that when ELI is used, coalescing
has lesser effect on throughput. The granularity of coalesc-
ing can therefore be made finer, so as to refrain from the
increased latency that coarse coalescing induces.

5.5. Latency
By removing the exits caused by external interrupts, ELI
substantially reduces the time it takes to deliver interrupts
to the guest. This period of time is critical for latency-
sensitive workloads. We measure ELI’s latency improve-
ment using Netperf UDP request-response, which sends a
UDP packet and waits for a reply before sending the next.
To simulate a busy guest that has work to do alongside a
latency-sensitive application, we run a busy-loop within
the guest. As the results in Table 2 show, baseline device
assignment increases bare metal latency by 8.21 µs and
that ELI reduces this gap to only 0.58 µs, which is within
98% of bare-metal latency.

6. AFTERMATH
In our original ASPLOS 2012 paper, we urged hardware ven-
dors to add hardware support that would simplify implement-
ing direct interrupt delivery to guest virtual machines. We
made the case that the substantial performance improvement
demonstrated by ELI merits the effort to add such support. We
are happy to report that, since then, a few positive steps has
been taken in this direction.

To mitigate some of the overheads caused by interrupts
delivery, hypervisors can now use the Intel “virtual APIC”
(APICv) feature. Assume that a guest currently runs on core C1.
The hypervisor can arrange things such that the relevant
(physical) interrupts are triggered on a different core C2 that
runs in host mode. When an interrupt reaches C2, APICv
then allows the hypervisor to “forward” the corresponding
(virtual) interrupts to C1 to the guest without inducing an
exit. Although such a scheme eliminates unwarranted exits
for the guest, it is inferior to ELI due to two reasons. First, it
requires dedicating special host cores (like C2) for redirect-
ing guest interrupts. Second, it increases interrupts delivery
latency, as they must first be processed by the hypervisor at
C2 and only then can they be delivered to the guest at C1.

Both Intel and AMD indicate that they intend to sup-
port direct ELI-like delivery in hardware.12 Some ARM chips
already support such delivery.4 It is still unclear, however,
whether this hardware support would live up to its promise.
The first generation of Intel implementation, for instance,
would deliver each guest interrupt to a certain core. As a
result, this implementation may not be usable for multi-core
guests whose OS spreads interrupts across the guest cores.

7. CONCLUSION
The key to high virtualization performance is for the CPU to
spend most of its time in guest mode, running the guest, and
not in the host, handling guest exits. Yet current approaches
to x86 virtualization induce multiple exits by requiring host
involvement in the critical interrupt handling path. The result
is that I/O performance suffers. We propose to eliminate the
unwarranted exits by introducing ELI, an approach that lets
guests handle interrupts directly and securely. Building on
many previous efforts to reduce virtualization overhead, ELI
finally makes it possible for untrusted and unmodified vir-
tual machines to reach nearly bare-metal performance, even
for the most I/O-intensive workloads. Considering, it seems
that the next logical step for chip vendors is extend the posted
interrupts architecture so as to support the ELI paradigm in
hardware, thereby simplifying its implementation.

Acknowledgments
The research leading to the results presented in this paper is
partially supported by the European Community’s Seventh
Framework Programme ([FP7/2001–2013]) under grant
agreements #248615 (IOLanes) and #248647 (ENCORE).

Table 2. Latency measured by Netperf UDP request-response
benchmark.

Configuration Latency (ms) % Overhead

Baseline 36.14 29
ELI 28.51 2
Bare-metal 27.93 0

0%

20%

40%

60%

80%

100%

120%

10K 20K 30K 40K 50K 60K 70K 80K

EL
I’

s
th

ro
ug

hp
ut

 im
pr

ov
em

en
t

Interrupts/second

16

24

32
40485664

72
80

88
96

Figure 5. Throughput improvement and interrupt rate for Netperf
benchmark with different interrupt coalescing intervals (shown in
labels).

References
 1. Adams, K., Agesen, O. A comparison

of software and hardware
techniques for x86 virtualization.
In ACM Architectural Support
for Programming Languages &
Operating Systems (ASPLOS) (2006).

 2. Agesen, O., Mattson, J., Rugina, R.,
Sheldon, J. Software techniques
for avoiding hardware virtualization
exits. In USENIX Annual
Technical Conference (ATC)
(2012), 373–385.

 3. Ahmad, I., Gulati, A., Mashtizadeh, A.
vIC: Interrupt coalescing for
virtual machine storage device
IO. In USENIX Annual Technical

Conference (ATC) (2011).
 4. ARM Ltd. Arm Generic Interrupt

Controller Architecture Version 2.0.
ARM IHI 0048B, 2011.

 5. Barham, P., Dragovic, B., Fraser, K.,
Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., Warfield, A.
Xen and the art of virtualization.
In ACM Symposium on Operating
Systems Principles (SOSP) (2003).

 6. Ben-Yehuda, M., Day, M.D., Dubitzky, Z.,
Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O.,
Yassour, B.-A. The turtles project:
Design and implementation
of nested virtualization.
In USENIX Symposium on

research highlights

116 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

Operating Systems Design &
Implementation (OSDI) (2010).

 7. Codd, E.F. Advances in Computers.
Volume 3, New York: Academic Press,
1962, 77–153.

 8. Dong, Y., Xu, D., Zhang, Y., Liao, G.
Optimizing network I/O virtualization
with efficient interrupt coalescing and
virtual receive side scaling. In IEEE
International Conference on Cluster
Computing (CLUSTER) (2011).

 9. Dong, Y., Yang, X., Li, X., Li, J., Tian, K.,
Guan, H. High performance network
virtualization with SR-IOV. In IEEE
International Symposium on High
Performance Computer Architecture
(HPCA) (2010).

 10. Dovrolis, C., Thayer, B., Ramanathan, P.
HIP: Hybrid interrupt-polling for the
network interface. ACM SIGOPS
Operat. Syst. Rev. 35
(2001), 50–60.

 11. Intel Corporation. Intel 64 and
IA-32 Architectures Software
Developer’s Manual, 2014.

 12. Intel Corporation. Intel virtualization
technology for directed I/O
architecture specification, 2014.

 13. Keller, E., Szefer, J., Rexford, J.,
Lee, R.B. NoHype: Virtualized
cloud infrastructure without
the virtualization. In ACM/IEEE
International Symposium on
Computer Architecture (ISCA)
(2010), ACM.

 14. Lange, J.R., Pedretti, K., Dinda, P.,
Bridges, P.G., Bae, C., Soltero, P.,
Merritt, A. Minimal-overhead
virtualization of a large scale
supercomputer. In ACM/USENIX
International Conference on Virtual
Execution Environments (VEE) (2011).

 15. Larsen, S., Sarangam, P.,
Huggahalli, R., Kulkarni, S.

Architectural breakdown of end-
to-end latency in a TCP/IP network.
Int. J. Parallel Prog. 37, 6 (2009),
556–571.

 16. Liu, J. Evaluating standard-based self-
virtualizing devices: A performance
study on 10 GbE NICs with SR-IOV
support. In IEEE International
Parallel & Distributed Processing
Symposium (IPDPS) (2010).

 17. Liu, J., Huang, W., Abali, B., Panda, D.K.
High performance VMM-bypass
I/O in virtual machines. In USENIX
Annual Technical Conference (ATC)
(2006).

 18. Mogul, J.C., Ramakrishnan, K.K.
Eliminating receive livelock in
an interrupt-driven kernel.
ACM Trans. Comput. Syst. 15
(1997), 217–252.

 19. Raj, H., Schwan, K. High performance
and scalable I/O virtualization
via self-virtualized devices. In
International Symposium on High
Performance Distributed Computer
(HPDC) (2007).

 20. Ram, K.K., Santos, J.R., Turner, Y.,
Cox, A.L., Rixner, S. Achieving 10Gbps
using safe and transparent network
interface virtualization. In ACM/
USENIX International Conference
on Virtual Execution Environments
(VEE) (2009).

 21. Salah, K. To coalesce or not to
coalesce. Int. J. Electron. Commun.
61, 4 (2007), 215–225.

 22. Salah, K., Qahtan, A. Boosting
throughput of Snort NIDS under
Linux. In International Conference
on Innovations in Information
Technology (IIT) (2008).

 23. Salim, J.H., Olsson, R., Kuznetsov,
A. Beyond softnet. In Annual Linux
Showcase & Conference (2001).

 24. Santos, J.R., Turner, Y., Janakiraman, G.J.,
Pratt, I. Bridging the gap between
software and hardware techniques
for I/O virtualization. In USENIX
Annual Technical Conference (ATC)
(2008).

 25. Willmann, P., Shafer, J., Carr, D.,
Menon, A., Rixner, S., Cox, A.L.,
Zwaenepoel, W. Concurrent direct
network access for virtual machine
monitors. In IEEE International

Symposium on High Performance
Computer Architecture (HPCA) (2007).

 26. Zec, M., Mikuc, M., Žagar, M.
Estimating the impact of interrupt
coalescing delays on steady state
TCP throughput. In International
Conference on Software,
Telecommunications and Computer
Networks (SoftCOM) (2002).

Nadav Amit, Assaf Schuster, and
Dan Tsafrir ({namit, assaf, dan}@
cs.technion.ac.il), Technion, Haifa, Israel.

Abel Gordon and Muli Ben-Yehuda
(abel@stratoscale.com, mulix@mulix.org),
Stratoscale, Haifa, Israel.

Authors Gordon, Har'El, Ben-Yehuda, and
Landau conducted the research discussed
in the paper while employed at IBM.

Nadav Har’El (nadav@harel.org.il),
Cloudius Systems, Herzliya Pituach,
Israel.

Alex Landau (landau.alex@gmail.com),
Facebook, Seattle, WA.

Copyright held by authors.
Publication rights licensed to ACM. $15.00.

ACM Transactions on Parallel Computing
Solutions to Complex Issues in Parallelism
Editor-in-Chief: Phillip B. Gibbons, Intel Labs, Pittsburgh, USA

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

ACM Transactions on Parallel Computing (TOPC) is a forum for novel
and innovative work on all aspects of parallel computing, including
foundational and theoretical aspects, systems, languages, architectures,
tools, and applications. It will address all classes of parallel-processing
platforms including concurrent, multithreaded, multicore, accelerated,
multiprocessor, clusters, and supercomputers.

Subject Areas

• Parallel Programming Languages and Models
• Parallel System Software
• Parallel Architectures
• Parallel Algorithms and Theory
• Parallel Applications
• Tools for Parallel Computing

For further information or to submit your manuscript, visit topc.acm.org

Subscribe at www.acm.org/subscribe

